基于多模态融合时间段网络的动态手势识别

Mingyao Zheng, Y. Tie, L. Qi, Shengnan Jiang
{"title":"基于多模态融合时间段网络的动态手势识别","authors":"Mingyao Zheng, Y. Tie, L. Qi, Shengnan Jiang","doi":"10.1109/ISNE.2019.8896438","DOIUrl":null,"url":null,"abstract":"Gesture recognition is applied in various intelligent scenes. In this paper, we propose the multi-modality fusion temporal segment networks (MMFTSN) model to solve dynamic gestures recognition. Three gesture modalities: RGB, Depth and Optical flow (OF) video data are equally segmented and randomly sampled. Then, the sampling frames are classified using convolutional neural network. Finally, fusing three kinds of modality classification results. MMFTSN is used to obtain the recognition accuracy of 60.2% on the gesture database Chalearn LAP IsoGD, which is better than the result of related algorithms. The results show that the improved performance of our MMFTSN model.","PeriodicalId":405565,"journal":{"name":"2019 8th International Symposium on Next Generation Electronics (ISNE)","volume":"527 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Gesture Recognition Based on the Multimodality Fusion Temporal Segment Networks\",\"authors\":\"Mingyao Zheng, Y. Tie, L. Qi, Shengnan Jiang\",\"doi\":\"10.1109/ISNE.2019.8896438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gesture recognition is applied in various intelligent scenes. In this paper, we propose the multi-modality fusion temporal segment networks (MMFTSN) model to solve dynamic gestures recognition. Three gesture modalities: RGB, Depth and Optical flow (OF) video data are equally segmented and randomly sampled. Then, the sampling frames are classified using convolutional neural network. Finally, fusing three kinds of modality classification results. MMFTSN is used to obtain the recognition accuracy of 60.2% on the gesture database Chalearn LAP IsoGD, which is better than the result of related algorithms. The results show that the improved performance of our MMFTSN model.\",\"PeriodicalId\":405565,\"journal\":{\"name\":\"2019 8th International Symposium on Next Generation Electronics (ISNE)\",\"volume\":\"527 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Symposium on Next Generation Electronics (ISNE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNE.2019.8896438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Symposium on Next Generation Electronics (ISNE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2019.8896438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

手势识别应用于各种智能场景中。本文提出了多模态融合时间段网络(MMFTSN)模型来解决动态手势识别问题。三种手势模式:RGB,深度和光流(OF)视频数据等分割和随机采样。然后,利用卷积神经网络对采样帧进行分类。最后,将三种情态分类结果进行融合。利用MMFTSN在手势数据库Chalearn LAP IsoGD上获得60.2%的识别准确率,优于相关算法的识别结果。结果表明,我们的MMFTSN模型的性能得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Gesture Recognition Based on the Multimodality Fusion Temporal Segment Networks
Gesture recognition is applied in various intelligent scenes. In this paper, we propose the multi-modality fusion temporal segment networks (MMFTSN) model to solve dynamic gestures recognition. Three gesture modalities: RGB, Depth and Optical flow (OF) video data are equally segmented and randomly sampled. Then, the sampling frames are classified using convolutional neural network. Finally, fusing three kinds of modality classification results. MMFTSN is used to obtain the recognition accuracy of 60.2% on the gesture database Chalearn LAP IsoGD, which is better than the result of related algorithms. The results show that the improved performance of our MMFTSN model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of mutual inductance between planar inductors on the same plane A novel active inductor with high self-resonance frequency high Q factor and independent adjustment of inductance Application of Artificial Intelligence Technology in Short-range Logistics Drones Image Registration Algorithm for Sequence Pathology Slices Of Pulmonary Nodule Study on SOC Estimation of Lithium Battery Based on Improved BP Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1