传感器融合特征不确定性估计在自动车辆定位中的应用

C. M. Martinez, Feihu Zhang, Daniel Clarke, Gereon Hinz, Dongpu Cao
{"title":"传感器融合特征不确定性估计在自动车辆定位中的应用","authors":"C. M. Martinez, Feihu Zhang, Daniel Clarke, Gereon Hinz, Dongpu Cao","doi":"10.23919/ICIF.2017.8009655","DOIUrl":null,"url":null,"abstract":"Within the complex driving environment, progress in autonomous vehicles is supported by advances in sensing and data fusion. Safe and robust autonomous driving can only be guaranteed provided that vehicles and infrastructure are fully aware of the driving scenario. This paper proposes a methodology for feature uncertainty prediction for sensor fusion by generating neural network surrogate models directly from data. This technique is particularly applied to vehicle location through odometry measurements, vehicle speed and orientation, to estimate the location uncertainty at any point along the trajectory. Neural networks are shown to be a suitable modeling technique, presenting good generalization capability and robust results.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"377 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Feature uncertainty estimation in sensor fusion applied to autonomous vehicle location\",\"authors\":\"C. M. Martinez, Feihu Zhang, Daniel Clarke, Gereon Hinz, Dongpu Cao\",\"doi\":\"10.23919/ICIF.2017.8009655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the complex driving environment, progress in autonomous vehicles is supported by advances in sensing and data fusion. Safe and robust autonomous driving can only be guaranteed provided that vehicles and infrastructure are fully aware of the driving scenario. This paper proposes a methodology for feature uncertainty prediction for sensor fusion by generating neural network surrogate models directly from data. This technique is particularly applied to vehicle location through odometry measurements, vehicle speed and orientation, to estimate the location uncertainty at any point along the trajectory. Neural networks are shown to be a suitable modeling technique, presenting good generalization capability and robust results.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"377 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在复杂的驾驶环境中,自动驾驶汽车的进步得到了传感和数据融合技术进步的支持。只有在车辆和基础设施充分了解驾驶场景的情况下,才能保证安全可靠的自动驾驶。本文提出了一种直接从数据中生成神经网络代理模型的传感器融合特征不确定性预测方法。该技术特别适用于通过里程测量、车辆速度和方向来确定车辆位置,以估计沿轨迹任意点的位置不确定性。神经网络具有良好的泛化能力和鲁棒性,是一种合适的建模技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature uncertainty estimation in sensor fusion applied to autonomous vehicle location
Within the complex driving environment, progress in autonomous vehicles is supported by advances in sensing and data fusion. Safe and robust autonomous driving can only be guaranteed provided that vehicles and infrastructure are fully aware of the driving scenario. This paper proposes a methodology for feature uncertainty prediction for sensor fusion by generating neural network surrogate models directly from data. This technique is particularly applied to vehicle location through odometry measurements, vehicle speed and orientation, to estimate the location uncertainty at any point along the trajectory. Neural networks are shown to be a suitable modeling technique, presenting good generalization capability and robust results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning for situational understanding Event state based particle filter for ball event detection in volleyball game analysis Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and group-sparsity total variation A risk-based sensor management using random finite sets and POMDP Track a smoothly maneuvering target based on trajectory estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1