预测分析支持基于COVID-19数据的卫生信息学

C. Leung, Thanh Huy Daniel Mai, N. D. Tran, Christine Y. Zhang
{"title":"预测分析支持基于COVID-19数据的卫生信息学","authors":"C. Leung, Thanh Huy Daniel Mai, N. D. Tran, Christine Y. Zhang","doi":"10.1109/BIBE52308.2021.9635556","DOIUrl":null,"url":null,"abstract":"Bioinformatics and health informatics-in conjection with data science, data mining and machine learning-have been applied in numerous real-life applications including disease and healthcare analytics, such as predictive analytics of coronavirus disease 2019 (COVID-19). Many of these existing works usually require large volumes of data train the classification and prediction models. However, these data (e.g., computed tomography (CT) scan images, viral/molecular test results) that can be expensive to produce and/or not easily accessible. For instance, partially due to privacy concerns and other factors, the volume of available disease data can be limited. Hence, in this paper, we present a predictive analytics system to support health analytics. Specifically, the system make good use of autoencoder and few-shot learning to train the prediction model with only a few samples of more accessible and less expensive types of data (e.g., serology/antibody test results from blood samples), which helps to support prediction on classification of potential patients (e.g., potential COVID-19 patients). Moreover, the system also provides users (e.g., healthcare providers) with predictions on hospitalization status and clinical outcomes of COVID-19 patients. This provides healthcare administrators and staff with a good estimate on the demand for healthcare support. With this system, users could then focus and provide timely treatment to the true patients, thus preventing them for spreading the disease in the community. The system is helpful, especially for rural areas, when sophisticated equipment (e.g., CT scanners) may be unavailable. Evaluation results on a real-life datasets demonstrate the effectiveness of our digital health system in health analytics, especially in classifying patients and their medical needs.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Predictive Analytics to Support Health Informatics on COVID-19 Data\",\"authors\":\"C. Leung, Thanh Huy Daniel Mai, N. D. Tran, Christine Y. Zhang\",\"doi\":\"10.1109/BIBE52308.2021.9635556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioinformatics and health informatics-in conjection with data science, data mining and machine learning-have been applied in numerous real-life applications including disease and healthcare analytics, such as predictive analytics of coronavirus disease 2019 (COVID-19). Many of these existing works usually require large volumes of data train the classification and prediction models. However, these data (e.g., computed tomography (CT) scan images, viral/molecular test results) that can be expensive to produce and/or not easily accessible. For instance, partially due to privacy concerns and other factors, the volume of available disease data can be limited. Hence, in this paper, we present a predictive analytics system to support health analytics. Specifically, the system make good use of autoencoder and few-shot learning to train the prediction model with only a few samples of more accessible and less expensive types of data (e.g., serology/antibody test results from blood samples), which helps to support prediction on classification of potential patients (e.g., potential COVID-19 patients). Moreover, the system also provides users (e.g., healthcare providers) with predictions on hospitalization status and clinical outcomes of COVID-19 patients. This provides healthcare administrators and staff with a good estimate on the demand for healthcare support. With this system, users could then focus and provide timely treatment to the true patients, thus preventing them for spreading the disease in the community. The system is helpful, especially for rural areas, when sophisticated equipment (e.g., CT scanners) may be unavailable. Evaluation results on a real-life datasets demonstrate the effectiveness of our digital health system in health analytics, especially in classifying patients and their medical needs.\",\"PeriodicalId\":343724,\"journal\":{\"name\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE52308.2021.9635556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

生物信息学和健康信息学-结合数据科学,数据挖掘和机器学习-已经应用于许多现实生活中的应用,包括疾病和医疗保健分析,例如2019年冠状病毒病(COVID-19)的预测分析。许多现有的工作通常需要大量的数据来训练分类和预测模型。然而,这些数据(例如,计算机断层扫描(CT)扫描图像,病毒/分子测试结果)可能产生昂贵和/或不易获得。例如,部分由于隐私问题和其他因素,可用疾病数据的数量可能有限。因此,在本文中,我们提出了一个预测分析系统来支持健康分析。具体来说,该系统很好地利用了自动编码器和少次学习来训练预测模型,仅使用少数更容易获取且更便宜的数据类型(例如血液样本的血清学/抗体检测结果),这有助于支持对潜在患者(例如潜在的COVID-19患者)的分类预测。此外,该系统还为用户(例如医疗保健提供者)提供COVID-19患者住院状况和临床结果的预测。这为医疗保健管理员和工作人员提供了对医疗保健支持需求的良好估计。有了这个系统,用户就可以集中精力,及时治疗真正的病人,从而防止疾病在社区传播。该系统是有用的,特别是在农村地区,当复杂的设备(如CT扫描仪)可能不可用。对真实数据集的评估结果证明了我们的数字卫生系统在健康分析方面的有效性,特别是在对患者及其医疗需求进行分类方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive Analytics to Support Health Informatics on COVID-19 Data
Bioinformatics and health informatics-in conjection with data science, data mining and machine learning-have been applied in numerous real-life applications including disease and healthcare analytics, such as predictive analytics of coronavirus disease 2019 (COVID-19). Many of these existing works usually require large volumes of data train the classification and prediction models. However, these data (e.g., computed tomography (CT) scan images, viral/molecular test results) that can be expensive to produce and/or not easily accessible. For instance, partially due to privacy concerns and other factors, the volume of available disease data can be limited. Hence, in this paper, we present a predictive analytics system to support health analytics. Specifically, the system make good use of autoencoder and few-shot learning to train the prediction model with only a few samples of more accessible and less expensive types of data (e.g., serology/antibody test results from blood samples), which helps to support prediction on classification of potential patients (e.g., potential COVID-19 patients). Moreover, the system also provides users (e.g., healthcare providers) with predictions on hospitalization status and clinical outcomes of COVID-19 patients. This provides healthcare administrators and staff with a good estimate on the demand for healthcare support. With this system, users could then focus and provide timely treatment to the true patients, thus preventing them for spreading the disease in the community. The system is helpful, especially for rural areas, when sophisticated equipment (e.g., CT scanners) may be unavailable. Evaluation results on a real-life datasets demonstrate the effectiveness of our digital health system in health analytics, especially in classifying patients and their medical needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural, antimicrobial, and molecular docking study of 3-(1-(4-hydroxyphenyl)amino) ethylidene)chroman-2,4-dione and its corresponding Pd complex Multiple-Activation Parallel Convolution Network in Combination with t-SNE for the Classification of Mild Cognitive Impairment Analyzing the Impact of Resampling Approaches on Chest X-Ray Images for COVID-19 Identification in a Local Hierarchical Classification Scenario Analysis of knee joint forces in different types of jumps of top futsal players at the beginning and at the end of the preparation period Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1