采用RBF神经网络和模糊控制器对木浆游离度进行稳定

J. Bard, J. Patton, M. Musavi
{"title":"采用RBF神经网络和模糊控制器对木浆游离度进行稳定","authors":"J. Bard, J. Patton, M. Musavi","doi":"10.1109/IJCNN.1999.830848","DOIUrl":null,"url":null,"abstract":"The quality of paper produced in a papermaking process is largely dependent on the properties of the wood pulp used. One important property is pulp freeness. Ideally, a constant, predetermined level of freeness is desired to achieve the highest quality of paper possible. The focus of this paper is on developing a system to control the wood pulp freeness. A radial basis function (RBF) artificial neural network was used to model the freeness and a fuzzy logic controller was used to control the input parameters to maintain a desired level of freeness. Ideally, the controller will reduce pulp freeness fluctuations in order to improve overall paper sheet quality and production.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using RBF neural networks and a fuzzy logic controller to stabilize wood pulp freeness\",\"authors\":\"J. Bard, J. Patton, M. Musavi\",\"doi\":\"10.1109/IJCNN.1999.830848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of paper produced in a papermaking process is largely dependent on the properties of the wood pulp used. One important property is pulp freeness. Ideally, a constant, predetermined level of freeness is desired to achieve the highest quality of paper possible. The focus of this paper is on developing a system to control the wood pulp freeness. A radial basis function (RBF) artificial neural network was used to model the freeness and a fuzzy logic controller was used to control the input parameters to maintain a desired level of freeness. Ideally, the controller will reduce pulp freeness fluctuations in order to improve overall paper sheet quality and production.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.830848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.830848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在造纸过程中生产的纸的质量在很大程度上取决于所用木浆的性质。一个重要的特性是果肉游离度。理想情况下,为了获得尽可能高的纸张质量,需要一个恒定的、预定的自由度水平。本文的重点是开发一种控制木浆游离度的系统。采用径向基函数(RBF)人工神经网络对自由度进行建模,并采用模糊控制器对输入参数进行控制,以保持期望的自由度水平。理想情况下,控制器将减少纸浆游离度波动,以提高整体纸张质量和产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using RBF neural networks and a fuzzy logic controller to stabilize wood pulp freeness
The quality of paper produced in a papermaking process is largely dependent on the properties of the wood pulp used. One important property is pulp freeness. Ideally, a constant, predetermined level of freeness is desired to achieve the highest quality of paper possible. The focus of this paper is on developing a system to control the wood pulp freeness. A radial basis function (RBF) artificial neural network was used to model the freeness and a fuzzy logic controller was used to control the input parameters to maintain a desired level of freeness. Ideally, the controller will reduce pulp freeness fluctuations in order to improve overall paper sheet quality and production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1