{"title":"聚苯胺基复合材料的合成方法","authors":"M. Panigrahi, B. Adhikari","doi":"10.34256/ioriip2122","DOIUrl":null,"url":null,"abstract":"Polymer composites synthesized in the present work have been studied extensively. Polymer composites are investigated using sophisticated analytical tools. Electron microscopy was used to study the surface morphology by SEM/FESEM and dispersion of nanoparticles in the polymer matrix by HRTEM. The structural details, i.e., crystallite size, crystallinity, types of nano structure were studied by X-ray diffraction. H1-NMR, ESI-MS and FTIR have been used to elucidate chemical structure of synthesised monomers. The conformational variations in the polymeric materials have been studied using vibrational spectroscopy employing Fourier Transform Infrared (FTIR) spectroscopy. The UV-Visible absorption spectroscopy was used to study the optical properties of the monomers, and as-prepared polymeric samples. The DC conductivity measurement was carried out to study the electronic properties and charge transport mechanisms of the prepared polymeric samples. The gas sensing response was found by electrical measurement. Thermal study has been used to study the stability of prepared materials.","PeriodicalId":368918,"journal":{"name":"Polyaniline based Composite for Gas Sensors","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis Methods of Polyaniline Based Composites\",\"authors\":\"M. Panigrahi, B. Adhikari\",\"doi\":\"10.34256/ioriip2122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymer composites synthesized in the present work have been studied extensively. Polymer composites are investigated using sophisticated analytical tools. Electron microscopy was used to study the surface morphology by SEM/FESEM and dispersion of nanoparticles in the polymer matrix by HRTEM. The structural details, i.e., crystallite size, crystallinity, types of nano structure were studied by X-ray diffraction. H1-NMR, ESI-MS and FTIR have been used to elucidate chemical structure of synthesised monomers. The conformational variations in the polymeric materials have been studied using vibrational spectroscopy employing Fourier Transform Infrared (FTIR) spectroscopy. The UV-Visible absorption spectroscopy was used to study the optical properties of the monomers, and as-prepared polymeric samples. The DC conductivity measurement was carried out to study the electronic properties and charge transport mechanisms of the prepared polymeric samples. The gas sensing response was found by electrical measurement. Thermal study has been used to study the stability of prepared materials.\",\"PeriodicalId\":368918,\"journal\":{\"name\":\"Polyaniline based Composite for Gas Sensors\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polyaniline based Composite for Gas Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34256/ioriip2122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyaniline based Composite for Gas Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34256/ioriip2122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polymer composites synthesized in the present work have been studied extensively. Polymer composites are investigated using sophisticated analytical tools. Electron microscopy was used to study the surface morphology by SEM/FESEM and dispersion of nanoparticles in the polymer matrix by HRTEM. The structural details, i.e., crystallite size, crystallinity, types of nano structure were studied by X-ray diffraction. H1-NMR, ESI-MS and FTIR have been used to elucidate chemical structure of synthesised monomers. The conformational variations in the polymeric materials have been studied using vibrational spectroscopy employing Fourier Transform Infrared (FTIR) spectroscopy. The UV-Visible absorption spectroscopy was used to study the optical properties of the monomers, and as-prepared polymeric samples. The DC conductivity measurement was carried out to study the electronic properties and charge transport mechanisms of the prepared polymeric samples. The gas sensing response was found by electrical measurement. Thermal study has been used to study the stability of prepared materials.