神经模糊模式识别算法及其在刀具状态监测中的应用

P. Fu, A. Hope, G. King
{"title":"神经模糊模式识别算法及其在刀具状态监测中的应用","authors":"P. Fu, A. Hope, G. King","doi":"10.1109/ICOSP.1998.770831","DOIUrl":null,"url":null,"abstract":"An important element of the automatic machining process control function is the on-line monitoring of cutting tool wear and fracture mechanisms. This paper presents an intelligent tool condition monitoring system. The multisensor signals reflect the tool condition comprehensively. Redundant signal features are removed by using a fuzzy clustering feature filter. A unique fuzzy driven neural network has been developed to carry out the fusion of multi-sensor information and tool wear classification. It combines the transparent representation of fuzzy systems with the learning ability of neural networks hence the algorithm has strong modelling and noise suppression ability. Successful tool wear classification can be realized under a range of machining conditions.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A neurofuzzy pattern recognition algorithm and its application in tool condition monitoring process\",\"authors\":\"P. Fu, A. Hope, G. King\",\"doi\":\"10.1109/ICOSP.1998.770831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important element of the automatic machining process control function is the on-line monitoring of cutting tool wear and fracture mechanisms. This paper presents an intelligent tool condition monitoring system. The multisensor signals reflect the tool condition comprehensively. Redundant signal features are removed by using a fuzzy clustering feature filter. A unique fuzzy driven neural network has been developed to carry out the fusion of multi-sensor information and tool wear classification. It combines the transparent representation of fuzzy systems with the learning ability of neural networks hence the algorithm has strong modelling and noise suppression ability. Successful tool wear classification can be realized under a range of machining conditions.\",\"PeriodicalId\":145700,\"journal\":{\"name\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.1998.770831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

自动加工过程控制功能的一个重要组成部分是刀具磨损和断裂机理的在线监测。本文介绍了一种智能刀具状态监测系统。多传感器信号综合反映刀具状况。利用模糊聚类特征滤波器去除冗余信号特征。提出了一种独特的模糊驱动神经网络,实现了多传感器信息的融合和刀具磨损分类。该算法将模糊系统的透明表示与神经网络的学习能力相结合,具有较强的建模和噪声抑制能力。成功的刀具磨损分类可以在一系列加工条件下实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A neurofuzzy pattern recognition algorithm and its application in tool condition monitoring process
An important element of the automatic machining process control function is the on-line monitoring of cutting tool wear and fracture mechanisms. This paper presents an intelligent tool condition monitoring system. The multisensor signals reflect the tool condition comprehensively. Redundant signal features are removed by using a fuzzy clustering feature filter. A unique fuzzy driven neural network has been developed to carry out the fusion of multi-sensor information and tool wear classification. It combines the transparent representation of fuzzy systems with the learning ability of neural networks hence the algorithm has strong modelling and noise suppression ability. Successful tool wear classification can be realized under a range of machining conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new estimation formula for minimum filter length of optimum FIR digital filters A fuzzy associative memory pattern classifier Randomized method for planar motion estimation and matching points A robust speech feature-perceptive scalogram based on wavelet analysis A new class of feature-orientated motion estimation for motion pictures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1