{"title":"一类计算前传播的鲁棒数值格式","authors":"N. Therme","doi":"10.5802/SMAI-JCM.39","DOIUrl":null,"url":null,"abstract":"In this work a class of finite volume schemes is proposed to numerically solve equations involving propagating fronts. They fall into the class of Hamilton-Jacobi equations. Finite volume schemes based on staggered grids, and initially developed to compute fluid flows, are adapted to the G-equation, using the Hamilton-Jacobi theoretical framework. The designed scheme has a maximum principle property and is consistent an monotonous on Cartesian grids. A convergence property is then obtained for the scheme on Cartesian grids and numerical experiments evidence the convergence of the scheme on more general meshes.","PeriodicalId":376888,"journal":{"name":"The SMAI journal of computational mathematics","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of robust numerical schemes to compute front propagation\",\"authors\":\"N. Therme\",\"doi\":\"10.5802/SMAI-JCM.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work a class of finite volume schemes is proposed to numerically solve equations involving propagating fronts. They fall into the class of Hamilton-Jacobi equations. Finite volume schemes based on staggered grids, and initially developed to compute fluid flows, are adapted to the G-equation, using the Hamilton-Jacobi theoretical framework. The designed scheme has a maximum principle property and is consistent an monotonous on Cartesian grids. A convergence property is then obtained for the scheme on Cartesian grids and numerical experiments evidence the convergence of the scheme on more general meshes.\",\"PeriodicalId\":376888,\"journal\":{\"name\":\"The SMAI journal of computational mathematics\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The SMAI journal of computational mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/SMAI-JCM.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The SMAI journal of computational mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/SMAI-JCM.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A class of robust numerical schemes to compute front propagation
In this work a class of finite volume schemes is proposed to numerically solve equations involving propagating fronts. They fall into the class of Hamilton-Jacobi equations. Finite volume schemes based on staggered grids, and initially developed to compute fluid flows, are adapted to the G-equation, using the Hamilton-Jacobi theoretical framework. The designed scheme has a maximum principle property and is consistent an monotonous on Cartesian grids. A convergence property is then obtained for the scheme on Cartesian grids and numerical experiments evidence the convergence of the scheme on more general meshes.