{"title":"优化行为综合的等价性检验","authors":"K. Hao, Fei Xie, S. Ray, Jin Yang","doi":"10.1109/DATE.2010.5457049","DOIUrl":null,"url":null,"abstract":"Behavioral synthesis is the compilation of an Electronic system-level (ESL) design into an RTL implementation. We present a suite of optimizations for equivalence checking of RTL generated through behavioral synthesis. The optimizations exploit the high-level structure of the ESL description to ameliorate verification complexity. Experiments on representative benchmarks indicate that the optimizations can handle equivalence checking of synthesized designs with tens of thousands of lines of RTL.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Optimizing equivalence checking for behavioral synthesis\",\"authors\":\"K. Hao, Fei Xie, S. Ray, Jin Yang\",\"doi\":\"10.1109/DATE.2010.5457049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Behavioral synthesis is the compilation of an Electronic system-level (ESL) design into an RTL implementation. We present a suite of optimizations for equivalence checking of RTL generated through behavioral synthesis. The optimizations exploit the high-level structure of the ESL description to ameliorate verification complexity. Experiments on representative benchmarks indicate that the optimizations can handle equivalence checking of synthesized designs with tens of thousands of lines of RTL.\",\"PeriodicalId\":432902,\"journal\":{\"name\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2010.5457049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5457049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing equivalence checking for behavioral synthesis
Behavioral synthesis is the compilation of an Electronic system-level (ESL) design into an RTL implementation. We present a suite of optimizations for equivalence checking of RTL generated through behavioral synthesis. The optimizations exploit the high-level structure of the ESL description to ameliorate verification complexity. Experiments on representative benchmarks indicate that the optimizations can handle equivalence checking of synthesized designs with tens of thousands of lines of RTL.