利用聚类技术突出时间序列数据尺寸缩减的突出特征

Anupama Jawale, Ganesh M. Magar
{"title":"利用聚类技术突出时间序列数据尺寸缩减的突出特征","authors":"Anupama Jawale, Ganesh M. Magar","doi":"10.1109/IBSSC56953.2022.10037499","DOIUrl":null,"url":null,"abstract":"There exist many techniques for feature selection and reduction to reduce dimensions of the large sensor dataset. For real time data processing, compressed and prominent feature of highest significance is desirable for efficient way of resource optimization and computation cost reduction. The goal of this research study is to highlight most significant feature of the dataset and to generate compressed time series by highlighting it. The highlighted feature of accelerometer sensor dataset is extracted, and a more compressed form of time series is generated using statistical and clustering methods like k-means, Partition around Medoids (PAM), Max-Value, 95% Confidence Interval values and Ceil Function calculations. As a result, around 80 % reduction in dataset with the similar pattern as of original time series is achieved. The original time series is compared with generated output series using Dynamic Time Warping method, where, we have obtained normalized error distance of 0.02. (Accuracy 98%)","PeriodicalId":426897,"journal":{"name":"2022 IEEE Bombay Section Signature Conference (IBSSC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highlighting Prominent Features for Size Reduction in Time Series Data using Clustering Techniques\",\"authors\":\"Anupama Jawale, Ganesh M. Magar\",\"doi\":\"10.1109/IBSSC56953.2022.10037499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There exist many techniques for feature selection and reduction to reduce dimensions of the large sensor dataset. For real time data processing, compressed and prominent feature of highest significance is desirable for efficient way of resource optimization and computation cost reduction. The goal of this research study is to highlight most significant feature of the dataset and to generate compressed time series by highlighting it. The highlighted feature of accelerometer sensor dataset is extracted, and a more compressed form of time series is generated using statistical and clustering methods like k-means, Partition around Medoids (PAM), Max-Value, 95% Confidence Interval values and Ceil Function calculations. As a result, around 80 % reduction in dataset with the similar pattern as of original time series is achieved. The original time series is compared with generated output series using Dynamic Time Warping method, where, we have obtained normalized error distance of 0.02. (Accuracy 98%)\",\"PeriodicalId\":426897,\"journal\":{\"name\":\"2022 IEEE Bombay Section Signature Conference (IBSSC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Bombay Section Signature Conference (IBSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBSSC56953.2022.10037499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC56953.2022.10037499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了对大型传感器数据集进行降维,存在许多特征选择和降维技术。在实时数据处理中,最重要的压缩和突出特征是优化资源和降低计算成本的有效途径。本研究的目的是突出数据集的最重要特征,并通过突出数据集来生成压缩时间序列。提取加速度计传感器数据集的突出特征,并使用k-means, Partition around mediids (PAM), Max-Value, 95%置信区间值和Ceil函数计算等统计和聚类方法生成更压缩的时间序列。结果表明,具有与原始时间序列相似模式的数据集的概率降低了80%左右。使用Dynamic time Warping方法将原始时间序列与生成的输出序列进行比较,得到归一化误差距离为0.02。(精度为98%)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highlighting Prominent Features for Size Reduction in Time Series Data using Clustering Techniques
There exist many techniques for feature selection and reduction to reduce dimensions of the large sensor dataset. For real time data processing, compressed and prominent feature of highest significance is desirable for efficient way of resource optimization and computation cost reduction. The goal of this research study is to highlight most significant feature of the dataset and to generate compressed time series by highlighting it. The highlighted feature of accelerometer sensor dataset is extracted, and a more compressed form of time series is generated using statistical and clustering methods like k-means, Partition around Medoids (PAM), Max-Value, 95% Confidence Interval values and Ceil Function calculations. As a result, around 80 % reduction in dataset with the similar pattern as of original time series is achieved. The original time series is compared with generated output series using Dynamic Time Warping method, where, we have obtained normalized error distance of 0.02. (Accuracy 98%)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decentralized Ride Hailing System using Blockchain and IPFS Implementation of RFID-based Lab Inventory System Monkeypox Skin Lesion Classification Using Transfer Learning Approach A Solution to the Techno-Economic Generation Expansion Planning using Enhanced Dwarf Mongoose Optimization Algorithm Citation Count Prediction Using Different Time Series Analysis Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1