合成主指纹模板的进化生成方法:指纹识别中的字典攻击

Aditi Roy, N. Memon, J. Togelius, A. Ross
{"title":"合成主指纹模板的进化生成方法:指纹识别中的字典攻击","authors":"Aditi Roy, N. Memon, J. Togelius, A. Ross","doi":"10.1109/ICB2018.2018.00017","DOIUrl":null,"url":null,"abstract":"Recent research has demonstrated the possibility of generating \"Masterprints\" that can be used by an adversary to launch a dictionary attack against a fingerprint recognition system. Masterprints are fingerprint images that fortuitously match with a large number of other fingerprints thereby compromising the security of a fingerprint-based biometric system, especially those equipped with small-sized fingerprint sensors. This work presents new methods for creating a synthetic MasterPrint dictionary that sequentially maximizes the probability of matching a large number of target fingerprints. Three techniques, namely Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Differential Evolution (DE) and Particle Swarm Optimization (PSO), are explored. Experiments carried out using a commercial fingerprint verification software, and public datasets, show that the proposed approaches performed quite well compared to the previously known MasterPrint generation methods.","PeriodicalId":130957,"journal":{"name":"2018 International Conference on Biometrics (ICB)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Evolutionary Methods for Generating Synthetic MasterPrint Templates: Dictionary Attack in Fingerprint Recognition\",\"authors\":\"Aditi Roy, N. Memon, J. Togelius, A. Ross\",\"doi\":\"10.1109/ICB2018.2018.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has demonstrated the possibility of generating \\\"Masterprints\\\" that can be used by an adversary to launch a dictionary attack against a fingerprint recognition system. Masterprints are fingerprint images that fortuitously match with a large number of other fingerprints thereby compromising the security of a fingerprint-based biometric system, especially those equipped with small-sized fingerprint sensors. This work presents new methods for creating a synthetic MasterPrint dictionary that sequentially maximizes the probability of matching a large number of target fingerprints. Three techniques, namely Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Differential Evolution (DE) and Particle Swarm Optimization (PSO), are explored. Experiments carried out using a commercial fingerprint verification software, and public datasets, show that the proposed approaches performed quite well compared to the previously known MasterPrint generation methods.\",\"PeriodicalId\":130957,\"journal\":{\"name\":\"2018 International Conference on Biometrics (ICB)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB2018.2018.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB2018.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

最近的研究已经证明了生成“主指纹”的可能性,可以被对手用来对指纹识别系统发起字典攻击。“主指纹”是指偶然与大量其他指纹相匹配的指纹图像,从而危及基于指纹的生物识别系统的安全性,特别是那些配备了小型指纹传感器的系统。这项工作提出了创建合成MasterPrint字典的新方法,该字典依次最大化匹配大量目标指纹的概率。探讨了协方差矩阵自适应进化策略(CMA-ES)、差分进化(DE)和粒子群优化(PSO)三种技术。使用商业指纹验证软件和公共数据集进行的实验表明,与先前已知的MasterPrint生成方法相比,所提出的方法表现相当好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary Methods for Generating Synthetic MasterPrint Templates: Dictionary Attack in Fingerprint Recognition
Recent research has demonstrated the possibility of generating "Masterprints" that can be used by an adversary to launch a dictionary attack against a fingerprint recognition system. Masterprints are fingerprint images that fortuitously match with a large number of other fingerprints thereby compromising the security of a fingerprint-based biometric system, especially those equipped with small-sized fingerprint sensors. This work presents new methods for creating a synthetic MasterPrint dictionary that sequentially maximizes the probability of matching a large number of target fingerprints. Three techniques, namely Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Differential Evolution (DE) and Particle Swarm Optimization (PSO), are explored. Experiments carried out using a commercial fingerprint verification software, and public datasets, show that the proposed approaches performed quite well compared to the previously known MasterPrint generation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conformal Mapping of a 3D Face Representation onto a 2D Image for CNN Based Face Recognition Two-Stream Part-Based Deep Representation for Human Attribute Recognition SSBC 2018: Sclera Segmentation Benchmarking Competition Multifactor User Authentication with In-Air-Handwriting and Hand Geometry Evolutionary Methods for Generating Synthetic MasterPrint Templates: Dictionary Attack in Fingerprint Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1