基于强化学习的云边缘框架高效资源分配策略

Chun-An Yang, Hongli Xu, Shixiao Fan, Xuan Cheng, Minghui Liu, Xiaomin Wang
{"title":"基于强化学习的云边缘框架高效资源分配策略","authors":"Chun-An Yang, Hongli Xu, Shixiao Fan, Xuan Cheng, Minghui Liu, Xiaomin Wang","doi":"10.1109/ICCC56324.2022.10065844","DOIUrl":null,"url":null,"abstract":"Recently, Mobile Edge Cloud Computing (MECC) emerges as a promising partial offloading paradigm to provide computing services. However, the design of computation resource allocation policies for the MECC network inevitably encounters a challenging delay-sensitive two-queue optimization problem. Specifically, the coupled computation resource allocation of edge processing queue and cloud processing queue makes it difficult to guarantee the end-to-end delay requirements. This study investigates this problem with the stochasticity of computation request arrival, service time, and dynamic computation resources. We first model the MECC network as a two-stage tandem queue that consists of two sequential computation processing queues with multiple servers. A Deep Reinforcement Learning (DRL) algorithm, is then applied to learn a computation speed adjusting policy for the tandem queue, which can provide end-to-end delay insurance for multiple mobile applications while preventing the total computation resources of edge servers and cloud servers from overuse. Finally, extensive simulation results demonstrate that our approach can achieve better performance than others in dynamic network environment.","PeriodicalId":263098,"journal":{"name":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Resource Allocation Policy for Cloud Edge End Framework by Reinforcement Learning\",\"authors\":\"Chun-An Yang, Hongli Xu, Shixiao Fan, Xuan Cheng, Minghui Liu, Xiaomin Wang\",\"doi\":\"10.1109/ICCC56324.2022.10065844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Mobile Edge Cloud Computing (MECC) emerges as a promising partial offloading paradigm to provide computing services. However, the design of computation resource allocation policies for the MECC network inevitably encounters a challenging delay-sensitive two-queue optimization problem. Specifically, the coupled computation resource allocation of edge processing queue and cloud processing queue makes it difficult to guarantee the end-to-end delay requirements. This study investigates this problem with the stochasticity of computation request arrival, service time, and dynamic computation resources. We first model the MECC network as a two-stage tandem queue that consists of two sequential computation processing queues with multiple servers. A Deep Reinforcement Learning (DRL) algorithm, is then applied to learn a computation speed adjusting policy for the tandem queue, which can provide end-to-end delay insurance for multiple mobile applications while preventing the total computation resources of edge servers and cloud servers from overuse. Finally, extensive simulation results demonstrate that our approach can achieve better performance than others in dynamic network environment.\",\"PeriodicalId\":263098,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC56324.2022.10065844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC56324.2022.10065844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,移动边缘云计算(MECC)作为一种有前途的部分卸载模式出现,以提供计算服务。然而,MECC网络的计算资源分配策略设计不可避免地遇到一个具有挑战性的延迟敏感双队列优化问题。具体来说,边缘处理队列和云处理队列的耦合计算资源分配使得端到端延迟需求难以保证。本文从计算请求到达、服务时间和动态计算资源的随机性出发,对该问题进行了研究。我们首先将MECC网络建模为一个两阶段串联队列,该队列由两个具有多个服务器的顺序计算处理队列组成。然后,应用深度强化学习(DRL)算法学习串联队列的计算速度调整策略,该策略可以为多个移动应用提供端到端延迟保障,同时防止边缘服务器和云服务器的总计算资源被过度使用。最后,大量的仿真结果表明,我们的方法在动态网络环境下可以取得比其他方法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Resource Allocation Policy for Cloud Edge End Framework by Reinforcement Learning
Recently, Mobile Edge Cloud Computing (MECC) emerges as a promising partial offloading paradigm to provide computing services. However, the design of computation resource allocation policies for the MECC network inevitably encounters a challenging delay-sensitive two-queue optimization problem. Specifically, the coupled computation resource allocation of edge processing queue and cloud processing queue makes it difficult to guarantee the end-to-end delay requirements. This study investigates this problem with the stochasticity of computation request arrival, service time, and dynamic computation resources. We first model the MECC network as a two-stage tandem queue that consists of two sequential computation processing queues with multiple servers. A Deep Reinforcement Learning (DRL) algorithm, is then applied to learn a computation speed adjusting policy for the tandem queue, which can provide end-to-end delay insurance for multiple mobile applications while preventing the total computation resources of edge servers and cloud servers from overuse. Finally, extensive simulation results demonstrate that our approach can achieve better performance than others in dynamic network environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Backward Edge Pointer Protection Technology Based on Dynamic Instrumentation Experimental Design of Router Debugging based Neighbor Cache States Change of IPv6 Nodes Sharing Big Data Storage for Air Traffic Management Study of Non-Orthogonal Multiple Access Technology for Satellite Communications A Joint Design of Polar Codes and Physical-layer Network Coding in Visible Light Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1