利用深度学习模型从情节摘要中预测电影的成功

You Jin Kim, Yun-Gyung Cheong, Jung Hoon Lee
{"title":"利用深度学习模型从情节摘要中预测电影的成功","authors":"You Jin Kim, Yun-Gyung Cheong, Jung Hoon Lee","doi":"10.18653/v1/W19-3414","DOIUrl":null,"url":null,"abstract":"As the size of investment for movie production grows bigger, the need for predicting a movie’s success in early stages has increased. To address this need, various approaches have been proposed, mostly relying on movie reviews, trailer movie clips, and SNS postings. However, all of these are available only after a movie is produced and released. To enable a more earlier prediction of a movie’s performance, we propose a deep-learning based approach to predict the success of a movie using only its plot summary text. This paper reports the results evaluating the efficacy of the proposed method and concludes with discussions and future work.","PeriodicalId":296321,"journal":{"name":"Proceedings of the Second Workshop on Storytelling","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Prediction of a Movie’s Success From Plot Summaries Using Deep Learning Models\",\"authors\":\"You Jin Kim, Yun-Gyung Cheong, Jung Hoon Lee\",\"doi\":\"10.18653/v1/W19-3414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the size of investment for movie production grows bigger, the need for predicting a movie’s success in early stages has increased. To address this need, various approaches have been proposed, mostly relying on movie reviews, trailer movie clips, and SNS postings. However, all of these are available only after a movie is produced and released. To enable a more earlier prediction of a movie’s performance, we propose a deep-learning based approach to predict the success of a movie using only its plot summary text. This paper reports the results evaluating the efficacy of the proposed method and concludes with discussions and future work.\",\"PeriodicalId\":296321,\"journal\":{\"name\":\"Proceedings of the Second Workshop on Storytelling\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second Workshop on Storytelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-3414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Storytelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

随着电影投资规模的扩大,对电影成功与否的早期预测需求也在增加。为了满足这一需求,人们提出了各种各样的方法,主要是依靠电影评论、预告片和SNS帖子。然而,所有这些都只有在电影制作和发行后才能使用。为了能够更早地预测电影的表现,我们提出了一种基于深度学习的方法,仅使用情节摘要文本来预测电影的成功。本文报告了评估该方法有效性的结果,并对讨论和未来的工作进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of a Movie’s Success From Plot Summaries Using Deep Learning Models
As the size of investment for movie production grows bigger, the need for predicting a movie’s success in early stages has increased. To address this need, various approaches have been proposed, mostly relying on movie reviews, trailer movie clips, and SNS postings. However, all of these are available only after a movie is produced and released. To enable a more earlier prediction of a movie’s performance, we propose a deep-learning based approach to predict the success of a movie using only its plot summary text. This paper reports the results evaluating the efficacy of the proposed method and concludes with discussions and future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Composing a Picture Book by Automatic Story Understanding and Visualization Personality Traits Recognition in Literary Texts A Simple Approach to Classify Fictional and Non-Fictional Genres Narrative Generation in the Wild: Methods from NaNoGenMo Using Functional Schemas to Understand Social Media Narratives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1