微型热电发电机(TEG)与催化加热

L. Anatychuk, V. Mikhailovskii, V. Konopelnyuk
{"title":"微型热电发电机(TEG)与催化加热","authors":"L. Anatychuk, V. Mikhailovskii, V. Konopelnyuk","doi":"10.1109/ICT.1996.553510","DOIUrl":null,"url":null,"abstract":"Modern fuel thermoelectric generators (TEG) are widely used in the range of 10-500 W. Chemical sources of current (CSC) that do not always satisfy consumers are used at lower powers. Negative factors are large weight, cost, self-discharge amount, problems in storage and maintenance at low temperatures. CSC manufacture is power-intensive, expensive and ecologically dangerous. That is why fuel TEGs capable of competing with CSCs are of interest. The paper is devoted to fuel TEGs on liquefied gas development for 10-100 mW power ranges. Small power heat sources have been developed on the catalytic counter-flow burner base which stably operates on gas and is suitable for continuous operation on a self-sufficiency basis. The catalytic burner feature at separated fuel and air supply is spontaneous burning resumption after short breaks in fuel supply, changes in air supply and combustion products discharge. The burner's temperature can be maintained within 250-400/spl deg/C. A high efficiency promoted catalyst with service life up to 10000 hours is used in heat sources. The use of results of a series research works in this direction ensured the development of such catalytic heat sources (CHS). TEGs design was made by the computer modelling. TEGs maximum is defined by the following optimizing parameters: a collector aerodynamic drag, burner-collector distance, fuel consumption, load impedance and thermoelectric battery properties.","PeriodicalId":447328,"journal":{"name":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniature thermoelectric generators (TEG) with catalytic heating\",\"authors\":\"L. Anatychuk, V. Mikhailovskii, V. Konopelnyuk\",\"doi\":\"10.1109/ICT.1996.553510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern fuel thermoelectric generators (TEG) are widely used in the range of 10-500 W. Chemical sources of current (CSC) that do not always satisfy consumers are used at lower powers. Negative factors are large weight, cost, self-discharge amount, problems in storage and maintenance at low temperatures. CSC manufacture is power-intensive, expensive and ecologically dangerous. That is why fuel TEGs capable of competing with CSCs are of interest. The paper is devoted to fuel TEGs on liquefied gas development for 10-100 mW power ranges. Small power heat sources have been developed on the catalytic counter-flow burner base which stably operates on gas and is suitable for continuous operation on a self-sufficiency basis. The catalytic burner feature at separated fuel and air supply is spontaneous burning resumption after short breaks in fuel supply, changes in air supply and combustion products discharge. The burner's temperature can be maintained within 250-400/spl deg/C. A high efficiency promoted catalyst with service life up to 10000 hours is used in heat sources. The use of results of a series research works in this direction ensured the development of such catalytic heat sources (CHS). TEGs design was made by the computer modelling. TEGs maximum is defined by the following optimizing parameters: a collector aerodynamic drag, burner-collector distance, fuel consumption, load impedance and thermoelectric battery properties.\",\"PeriodicalId\":447328,\"journal\":{\"name\":\"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.1996.553510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.1996.553510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代燃料热电发电机(TEG)广泛应用于10- 500w范围内。在较低功率下使用的化学电流源(CSC)并不总是让消费者满意。负面因素是重量大、成本高、自放电量大、储存和低温维护问题。CSC的制造是能源密集、昂贵且生态危险的。这就是为什么能够与csc竞争的燃料teg备受关注的原因。本文致力于10-100兆瓦功率范围内液化气开发的燃料TEGs。在催化逆流式燃烧器基座上研制了小功率热源,该热源在燃气上稳定运行,适合于自给自足的连续运行。燃料和空气分离供给时催化燃烧器的特点是燃料供给短暂中断、供气变化和燃烧产物排放后恢复自燃。燃烧器温度可保持在250-400/spl℃。热源采用高效促进催化剂,使用寿命可达10000小时。这一方向的一系列研究成果的应用保证了这种催化热源(CHS)的发展。通过计算机建模进行了TEGs的设计。TEGs的最大值由以下优化参数定义:集热器气动阻力、燃烧器-集热器距离、燃油消耗、负载阻抗和热电电池性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Miniature thermoelectric generators (TEG) with catalytic heating
Modern fuel thermoelectric generators (TEG) are widely used in the range of 10-500 W. Chemical sources of current (CSC) that do not always satisfy consumers are used at lower powers. Negative factors are large weight, cost, self-discharge amount, problems in storage and maintenance at low temperatures. CSC manufacture is power-intensive, expensive and ecologically dangerous. That is why fuel TEGs capable of competing with CSCs are of interest. The paper is devoted to fuel TEGs on liquefied gas development for 10-100 mW power ranges. Small power heat sources have been developed on the catalytic counter-flow burner base which stably operates on gas and is suitable for continuous operation on a self-sufficiency basis. The catalytic burner feature at separated fuel and air supply is spontaneous burning resumption after short breaks in fuel supply, changes in air supply and combustion products discharge. The burner's temperature can be maintained within 250-400/spl deg/C. A high efficiency promoted catalyst with service life up to 10000 hours is used in heat sources. The use of results of a series research works in this direction ensured the development of such catalytic heat sources (CHS). TEGs design was made by the computer modelling. TEGs maximum is defined by the following optimizing parameters: a collector aerodynamic drag, burner-collector distance, fuel consumption, load impedance and thermoelectric battery properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermoelectric generation and related properties of conventional type module based on Si-Ge alloy Doping with organic halogen-containing compounds the Bi2(Te,Se)3 solid solutions The theoretical analysis of the thermoelectric semiconducting crystalline materials figure of merit Thermoelectric coolers with small response time Effective figure of merit increase at the large temperature drops
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1