求解不确定条件下建筑能源调度的多目标鲁棒优化

J. Soares, Z. Vale, Nuno Borges, F. Lezama, N. Kagan
{"title":"求解不确定条件下建筑能源调度的多目标鲁棒优化","authors":"J. Soares, Z. Vale, Nuno Borges, F. Lezama, N. Kagan","doi":"10.1109/ISAP.2017.8071417","DOIUrl":null,"url":null,"abstract":"With the high penetration of renewable generation in Smart Grids (SG), the uncertainty behavior associated with the forecast of weather conditions possesses a new degree of complexity in the Energy Resource Management (ERM) problem. In this paper, a Multi-Objective Particle Swarm Optimization (MOPSO) methodology is proposed to solve ERM problem in buildings with penetration of Distributed Generation (DG) and Electric Vehicles (EVs) and considering the uncertainty of photovoltaic (PV) generation. The proposed methodology aims to maximize profits while minimizing CO2 emissions. The uncertainty of PV generation is modeled with the use of Monte Carlo simulation in the evaluation process of the MOPSO core. Also, a robust optimization approach is adopted to select the best solution for the worst-case scenario of PV generation. A case study is presented using a real building facility from Brazil, to verify the effectiveness of the implemented robust MOPSO.","PeriodicalId":257100,"journal":{"name":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multi-objective robust optimization to solve energy scheduling in buildings under uncertainty\",\"authors\":\"J. Soares, Z. Vale, Nuno Borges, F. Lezama, N. Kagan\",\"doi\":\"10.1109/ISAP.2017.8071417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the high penetration of renewable generation in Smart Grids (SG), the uncertainty behavior associated with the forecast of weather conditions possesses a new degree of complexity in the Energy Resource Management (ERM) problem. In this paper, a Multi-Objective Particle Swarm Optimization (MOPSO) methodology is proposed to solve ERM problem in buildings with penetration of Distributed Generation (DG) and Electric Vehicles (EVs) and considering the uncertainty of photovoltaic (PV) generation. The proposed methodology aims to maximize profits while minimizing CO2 emissions. The uncertainty of PV generation is modeled with the use of Monte Carlo simulation in the evaluation process of the MOPSO core. Also, a robust optimization approach is adopted to select the best solution for the worst-case scenario of PV generation. A case study is presented using a real building facility from Brazil, to verify the effectiveness of the implemented robust MOPSO.\",\"PeriodicalId\":257100,\"journal\":{\"name\":\"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2017.8071417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2017.8071417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

随着可再生能源发电在智能电网中的高度普及,与天气预报相关的不确定性行为在能源管理(ERM)问题中具有新的复杂性。考虑光伏发电的不确定性,提出了一种多目标粒子群优化(MOPSO)方法来解决分布式发电和电动汽车渗透建筑的ERM问题。所提出的方法旨在实现利润最大化,同时减少二氧化碳排放。利用蒙特卡罗模拟方法,对光伏发电的不确定性进行了建模。同时,采用鲁棒优化方法对光伏发电的最坏情况选择最佳方案。以巴西的一个实际建筑设施为例,验证了所实现的鲁棒MOPSO的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective robust optimization to solve energy scheduling in buildings under uncertainty
With the high penetration of renewable generation in Smart Grids (SG), the uncertainty behavior associated with the forecast of weather conditions possesses a new degree of complexity in the Energy Resource Management (ERM) problem. In this paper, a Multi-Objective Particle Swarm Optimization (MOPSO) methodology is proposed to solve ERM problem in buildings with penetration of Distributed Generation (DG) and Electric Vehicles (EVs) and considering the uncertainty of photovoltaic (PV) generation. The proposed methodology aims to maximize profits while minimizing CO2 emissions. The uncertainty of PV generation is modeled with the use of Monte Carlo simulation in the evaluation process of the MOPSO core. Also, a robust optimization approach is adopted to select the best solution for the worst-case scenario of PV generation. A case study is presented using a real building facility from Brazil, to verify the effectiveness of the implemented robust MOPSO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a multi-agent system for distributed voltage regulation Machine learning versus ray-tracing to forecast irradiance for an edge-computing SkyImager Modified teaching-learning based optimization algorithm and damping of inter-area oscillations through VSC-HVDC Intelligent system for automatic performance evaluation of distribution system operators Methodology for islanding operation of distributed synchronous generators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1