Dueling Double Deep Q-Network用于无人驾驶飞机系统在工厂环境中的室内探测

Andreas Seel, Florian Kreutzjans, B. Küster, M. Stonis, Ludger Overmeyer
{"title":"Dueling Double Deep Q-Network用于无人驾驶飞机系统在工厂环境中的室内探测","authors":"Andreas Seel, Florian Kreutzjans, B. Küster, M. Stonis, Ludger Overmeyer","doi":"10.1109/INFOTEH57020.2023.10094171","DOIUrl":null,"url":null,"abstract":"Although factory planning is widely recognized as a way to significantly enhance manufacturing productivity, the associated costs in terms of time and money can be prohibitive. In this paper, we present a solution to this challenge through the development of a Software-in-the-loop (SITL) framework that leverages an Unmanned Aircraft System (UAS) in an autonomous capacity. The framework incorporates simulated sensors, a UAS, and a virtual factory environment. Moreover, we propose a Deep Reinforcement Learning (DRL) agent that is capable of collision avoidance and exploration using the Dueling Double Deep Q-Network (3DQN) with prioritized experience replay.","PeriodicalId":287923,"journal":{"name":"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dueling Double Deep Q-Network for indoor exploration in factory environments with an unmanned aircraft system\",\"authors\":\"Andreas Seel, Florian Kreutzjans, B. Küster, M. Stonis, Ludger Overmeyer\",\"doi\":\"10.1109/INFOTEH57020.2023.10094171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although factory planning is widely recognized as a way to significantly enhance manufacturing productivity, the associated costs in terms of time and money can be prohibitive. In this paper, we present a solution to this challenge through the development of a Software-in-the-loop (SITL) framework that leverages an Unmanned Aircraft System (UAS) in an autonomous capacity. The framework incorporates simulated sensors, a UAS, and a virtual factory environment. Moreover, we propose a Deep Reinforcement Learning (DRL) agent that is capable of collision avoidance and exploration using the Dueling Double Deep Q-Network (3DQN) with prioritized experience replay.\",\"PeriodicalId\":287923,\"journal\":{\"name\":\"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOTEH57020.2023.10094171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH57020.2023.10094171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然工厂规划被广泛认为是显著提高生产效率的一种方式,但相关的时间和金钱成本可能令人望而却步。在本文中,我们通过开发利用无人机系统(UAS)自主能力的软件在环(SITL)框架,提出了解决这一挑战的方案。该框架集成了模拟传感器、无人机系统和虚拟工厂环境。此外,我们提出了一个深度强化学习(DRL)代理,它能够使用Dueling Double Deep Q-Network (3DQN)进行碰撞避免和探索,并具有优先的经验回放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dueling Double Deep Q-Network for indoor exploration in factory environments with an unmanned aircraft system
Although factory planning is widely recognized as a way to significantly enhance manufacturing productivity, the associated costs in terms of time and money can be prohibitive. In this paper, we present a solution to this challenge through the development of a Software-in-the-loop (SITL) framework that leverages an Unmanned Aircraft System (UAS) in an autonomous capacity. The framework incorporates simulated sensors, a UAS, and a virtual factory environment. Moreover, we propose a Deep Reinforcement Learning (DRL) agent that is capable of collision avoidance and exploration using the Dueling Double Deep Q-Network (3DQN) with prioritized experience replay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intro basics of modeling user rights management for the university diploma issuing process with the support of the Hyperledger Fabric C64 Emulation on Modern Operating System Potential of Mass Customization using Product Configurators Optimization of the test case minimization algorithm based on forward-propagation in cause-effect graphs A faster path to sustainability: the use of Digital Twins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1