G. S. Reddy, M. Premkumar, Suraj Ravi, L. Abualigah
{"title":"一种利用电网和独立太阳能光伏发电系统的电动汽车驱动智能转换器和控制器","authors":"G. S. Reddy, M. Premkumar, Suraj Ravi, L. Abualigah","doi":"10.11591/ijape.v12.i3.pp255-276","DOIUrl":null,"url":null,"abstract":"In this study, a battery energy management system for electric vehicle (EV) applications is proposed with a standalone photovoltaic (PV) source and controlled based on the availability of grid, PV source, load consumption, and energy stored in the battery. This paper proposes a single-ended primary-inductance converter (SEPIC) DC-DC converter for charging the battery through the utility and PV source that provides good load regulation. The bidirectional nature of the proposed DC-DC converter provides the charging and discharging of the EV battery in the succeeding modes of operation, i) grid-tied charging, ii) PV-tied charging, iii) discharging to the load in the absence of utility and PV source, and iv) regenerative braking. An improved perturb and observe-based maximum power point tracking (MPPT) algorithm is proposed to track the maximum power from the PV source. In addition, to handle the four modes of operation, a dedicated controller is also proposed. Firstly, the proposed system is validated using MATLAB/Simulink software by considering different operating conditions, and the performance is compared with the traditional MPPT algorithms. Finally, the effectiveness of the suggested system is validated through an experimental prototype. The result proved the superiority of the converter and controller over the traditional systems. ","PeriodicalId":340072,"journal":{"name":"International Journal of Applied Power Engineering (IJAPE)","volume":"288 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An intelligent converter and controller for electric vehicle drives utilizing grid and stand-alone solar photovoltaic power generation systems\",\"authors\":\"G. S. Reddy, M. Premkumar, Suraj Ravi, L. Abualigah\",\"doi\":\"10.11591/ijape.v12.i3.pp255-276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a battery energy management system for electric vehicle (EV) applications is proposed with a standalone photovoltaic (PV) source and controlled based on the availability of grid, PV source, load consumption, and energy stored in the battery. This paper proposes a single-ended primary-inductance converter (SEPIC) DC-DC converter for charging the battery through the utility and PV source that provides good load regulation. The bidirectional nature of the proposed DC-DC converter provides the charging and discharging of the EV battery in the succeeding modes of operation, i) grid-tied charging, ii) PV-tied charging, iii) discharging to the load in the absence of utility and PV source, and iv) regenerative braking. An improved perturb and observe-based maximum power point tracking (MPPT) algorithm is proposed to track the maximum power from the PV source. In addition, to handle the four modes of operation, a dedicated controller is also proposed. Firstly, the proposed system is validated using MATLAB/Simulink software by considering different operating conditions, and the performance is compared with the traditional MPPT algorithms. Finally, the effectiveness of the suggested system is validated through an experimental prototype. The result proved the superiority of the converter and controller over the traditional systems. \",\"PeriodicalId\":340072,\"journal\":{\"name\":\"International Journal of Applied Power Engineering (IJAPE)\",\"volume\":\"288 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Power Engineering (IJAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijape.v12.i3.pp255-276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering (IJAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijape.v12.i3.pp255-276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An intelligent converter and controller for electric vehicle drives utilizing grid and stand-alone solar photovoltaic power generation systems
In this study, a battery energy management system for electric vehicle (EV) applications is proposed with a standalone photovoltaic (PV) source and controlled based on the availability of grid, PV source, load consumption, and energy stored in the battery. This paper proposes a single-ended primary-inductance converter (SEPIC) DC-DC converter for charging the battery through the utility and PV source that provides good load regulation. The bidirectional nature of the proposed DC-DC converter provides the charging and discharging of the EV battery in the succeeding modes of operation, i) grid-tied charging, ii) PV-tied charging, iii) discharging to the load in the absence of utility and PV source, and iv) regenerative braking. An improved perturb and observe-based maximum power point tracking (MPPT) algorithm is proposed to track the maximum power from the PV source. In addition, to handle the four modes of operation, a dedicated controller is also proposed. Firstly, the proposed system is validated using MATLAB/Simulink software by considering different operating conditions, and the performance is compared with the traditional MPPT algorithms. Finally, the effectiveness of the suggested system is validated through an experimental prototype. The result proved the superiority of the converter and controller over the traditional systems.