{"title":"自主充电站多旋翼无人机系统精确着陆算法","authors":"E. A. Voznesenskii","doi":"10.31799/2077-5687-2021-4-3-10","DOIUrl":null,"url":null,"abstract":"In this article, we propose an algorithm for accurately landing multirotor (quadcopters, hexacopters, etc.) unmanned aerial vehicles (UAVs) at an autonomous charging station. This article also presents methods for locating the charging station and landing the UAV at night. Section 1 describes the general sequential landing procedures. Section 2 describes methods for detecting the ArUco marker and evaluating its position and orientation using the OpenCV computer vision library and shows the recognition result. In section 3, the precise landing algorithm is analyzed in detail, and a block diagram of the algorithm is given. Section 4 discusses the integration of the night vision camera into the landing algorithm.","PeriodicalId":329114,"journal":{"name":"System analysis and logistics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ALGORITHM FOR PRECISE LANDING OF MULTIROTOR UNMANNED AIRCRAFT SYSTEMS AT AN AUTONOMOUS CHARGING STATION\",\"authors\":\"E. A. Voznesenskii\",\"doi\":\"10.31799/2077-5687-2021-4-3-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose an algorithm for accurately landing multirotor (quadcopters, hexacopters, etc.) unmanned aerial vehicles (UAVs) at an autonomous charging station. This article also presents methods for locating the charging station and landing the UAV at night. Section 1 describes the general sequential landing procedures. Section 2 describes methods for detecting the ArUco marker and evaluating its position and orientation using the OpenCV computer vision library and shows the recognition result. In section 3, the precise landing algorithm is analyzed in detail, and a block diagram of the algorithm is given. Section 4 discusses the integration of the night vision camera into the landing algorithm.\",\"PeriodicalId\":329114,\"journal\":{\"name\":\"System analysis and logistics\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"System analysis and logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31799/2077-5687-2021-4-3-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"System analysis and logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31799/2077-5687-2021-4-3-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ALGORITHM FOR PRECISE LANDING OF MULTIROTOR UNMANNED AIRCRAFT SYSTEMS AT AN AUTONOMOUS CHARGING STATION
In this article, we propose an algorithm for accurately landing multirotor (quadcopters, hexacopters, etc.) unmanned aerial vehicles (UAVs) at an autonomous charging station. This article also presents methods for locating the charging station and landing the UAV at night. Section 1 describes the general sequential landing procedures. Section 2 describes methods for detecting the ArUco marker and evaluating its position and orientation using the OpenCV computer vision library and shows the recognition result. In section 3, the precise landing algorithm is analyzed in detail, and a block diagram of the algorithm is given. Section 4 discusses the integration of the night vision camera into the landing algorithm.