{"title":"介质和沟道缺陷对氧化物基p沟道tft电性能的影响","authors":"Viswanath G. Akkili, R. Thangavel, V. Srivastava","doi":"10.1109/LAEDC51812.2021.9437916","DOIUrl":null,"url":null,"abstract":"Among the other p-type oxide materials, Tin Monoxide (SnO) is of much attention due to higher hole mobility and ambipolar characteristics. In Thin Film Transistors (TFTs), the channel defects and dielectric material play an important role in the device’s electrical performance. Still, the influence of SnO defects on the TFT performance is poorly understood. This paper analyses the influence of defects in the semiconductor layer and various dielectrics’ impact on the electrical characteristics of the p-channel TFTs using the 2D numerical simulator. Improved numerical simulation of SnO TFT using SiO2, HfO2, and Al2O3 dielectrics have been performed and compared their effect on transfer and output characteristics.","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of Dielectrics and Channel Defects on the Electrical Performance of Oxide-based p-Channel TFTs for CMOS Applications\",\"authors\":\"Viswanath G. Akkili, R. Thangavel, V. Srivastava\",\"doi\":\"10.1109/LAEDC51812.2021.9437916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the other p-type oxide materials, Tin Monoxide (SnO) is of much attention due to higher hole mobility and ambipolar characteristics. In Thin Film Transistors (TFTs), the channel defects and dielectric material play an important role in the device’s electrical performance. Still, the influence of SnO defects on the TFT performance is poorly understood. This paper analyses the influence of defects in the semiconductor layer and various dielectrics’ impact on the electrical characteristics of the p-channel TFTs using the 2D numerical simulator. Improved numerical simulation of SnO TFT using SiO2, HfO2, and Al2O3 dielectrics have been performed and compared their effect on transfer and output characteristics.\",\"PeriodicalId\":112590,\"journal\":{\"name\":\"2021 IEEE Latin America Electron Devices Conference (LAEDC)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Latin America Electron Devices Conference (LAEDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAEDC51812.2021.9437916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAEDC51812.2021.9437916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Dielectrics and Channel Defects on the Electrical Performance of Oxide-based p-Channel TFTs for CMOS Applications
Among the other p-type oxide materials, Tin Monoxide (SnO) is of much attention due to higher hole mobility and ambipolar characteristics. In Thin Film Transistors (TFTs), the channel defects and dielectric material play an important role in the device’s electrical performance. Still, the influence of SnO defects on the TFT performance is poorly understood. This paper analyses the influence of defects in the semiconductor layer and various dielectrics’ impact on the electrical characteristics of the p-channel TFTs using the 2D numerical simulator. Improved numerical simulation of SnO TFT using SiO2, HfO2, and Al2O3 dielectrics have been performed and compared their effect on transfer and output characteristics.