{"title":"最大似然PET重建的隐藏数据空间","authors":"J. Fessler","doi":"10.1109/NSSMIC.1992.301014","DOIUrl":null,"url":null,"abstract":"The author shows that expectation-maximization (EM) algorithms based on smaller complete data spaces will typically converge faster. As an example, he compares the two maximum-likelihood (ML) image reconstruction algorithms of D. G. Politte and D. L. Snyder (1991) which are based on measurement models that account for attenuation and accidental coincidences in positron-emission tomography (PET).<<ETX>>","PeriodicalId":447239,"journal":{"name":"IEEE Conference on Nuclear Science Symposium and Medical Imaging","volume":"92 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hidden-data spaces for maximum-likelihood PET reconstruction\",\"authors\":\"J. Fessler\",\"doi\":\"10.1109/NSSMIC.1992.301014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author shows that expectation-maximization (EM) algorithms based on smaller complete data spaces will typically converge faster. As an example, he compares the two maximum-likelihood (ML) image reconstruction algorithms of D. G. Politte and D. L. Snyder (1991) which are based on measurement models that account for attenuation and accidental coincidences in positron-emission tomography (PET).<<ETX>>\",\"PeriodicalId\":447239,\"journal\":{\"name\":\"IEEE Conference on Nuclear Science Symposium and Medical Imaging\",\"volume\":\"92 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Nuclear Science Symposium and Medical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.1992.301014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Nuclear Science Symposium and Medical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.1992.301014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
作者表明,基于较小完整数据空间的期望最大化(EM)算法通常收敛速度更快。作为一个例子,他比较了D. G. Politte和D. L. Snyder(1991)的两种最大似然(ML)图像重建算法,这两种算法基于考虑正电子发射断层扫描(PET)中衰减和偶然巧合的测量模型
Hidden-data spaces for maximum-likelihood PET reconstruction
The author shows that expectation-maximization (EM) algorithms based on smaller complete data spaces will typically converge faster. As an example, he compares the two maximum-likelihood (ML) image reconstruction algorithms of D. G. Politte and D. L. Snyder (1991) which are based on measurement models that account for attenuation and accidental coincidences in positron-emission tomography (PET).<>