对GPU永久故障进行有效的故障仿真,用于cnn的可靠性估计

Juan-David Guerrero-Balaguera, Robert Limas Sierra, M. Reorda
{"title":"对GPU永久故障进行有效的故障仿真,用于cnn的可靠性估计","authors":"Juan-David Guerrero-Balaguera, Robert Limas Sierra, M. Reorda","doi":"10.1109/IOLTS56730.2022.9897823","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) and Graphic Processing Units (GPUs) are now increasingly adopted in many cutting edge safety-critical applications. Consequently, it is crucial to evaluate the reliability of these systems, since the hardware can be affected by several phenomena (e.g., wear out of the device), producing permanent defects in the GPU. These defects may induce wrong outcomes in the CNN that may endanger the application. Traditionally, the study of the effects of permanent faults on CNNs has been approached by resorting to application-level fault injection (e.g., acting on the weights). However, this approach has restricted scope, and it may not reveal the actual vulnerabilities in the GPU device. Hence, a more accurate evaluation of the fault effects is required, considering more in-depth details of the device’s hardware. This work introduces a more elaborated experimental evaluation of the impact of GPU’s permanent faults on the reliability of a CNN by resorting to a Software-Implemented Fault Injection(SWIFI) strategy, considering faults at the hardware level. The results of the fault simulation campaigns we performed on the GPU data-path cores are compared with those at the application level, proving that the latter ones are generally optimistic.","PeriodicalId":274595,"journal":{"name":"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effective fault simulation of GPU’s permanent faults for reliability estimation of CNNs\",\"authors\":\"Juan-David Guerrero-Balaguera, Robert Limas Sierra, M. Reorda\",\"doi\":\"10.1109/IOLTS56730.2022.9897823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNNs) and Graphic Processing Units (GPUs) are now increasingly adopted in many cutting edge safety-critical applications. Consequently, it is crucial to evaluate the reliability of these systems, since the hardware can be affected by several phenomena (e.g., wear out of the device), producing permanent defects in the GPU. These defects may induce wrong outcomes in the CNN that may endanger the application. Traditionally, the study of the effects of permanent faults on CNNs has been approached by resorting to application-level fault injection (e.g., acting on the weights). However, this approach has restricted scope, and it may not reveal the actual vulnerabilities in the GPU device. Hence, a more accurate evaluation of the fault effects is required, considering more in-depth details of the device’s hardware. This work introduces a more elaborated experimental evaluation of the impact of GPU’s permanent faults on the reliability of a CNN by resorting to a Software-Implemented Fault Injection(SWIFI) strategy, considering faults at the hardware level. The results of the fault simulation campaigns we performed on the GPU data-path cores are compared with those at the application level, proving that the latter ones are generally optimistic.\",\"PeriodicalId\":274595,\"journal\":{\"name\":\"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOLTS56730.2022.9897823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS56730.2022.9897823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

卷积神经网络(cnn)和图形处理单元(gpu)现在越来越多地应用于许多尖端的安全关键应用。因此,评估这些系统的可靠性至关重要,因为硬件可能受到几种现象的影响(例如,设备磨损),从而在GPU中产生永久性缺陷。这些缺陷可能会导致CNN出现错误的结果,从而危及应用。传统上,永久性故障对cnn影响的研究是通过应用级故障注入(例如,作用于权重)来进行的。然而,这种方法的范围有限,它可能无法揭示GPU设备中的实际漏洞。因此,需要更准确地评估故障影响,同时考虑到设备硬件更深入的细节。这项工作引入了一个更详细的实验评估,通过采用软件实现故障注入(SWIFI)策略,考虑硬件层面的故障,GPU的永久故障对CNN可靠性的影响。我们在GPU数据路径核心上进行的故障模拟活动的结果与应用层的结果进行了比较,证明后者总体上是乐观的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective fault simulation of GPU’s permanent faults for reliability estimation of CNNs
Convolutional Neural Networks (CNNs) and Graphic Processing Units (GPUs) are now increasingly adopted in many cutting edge safety-critical applications. Consequently, it is crucial to evaluate the reliability of these systems, since the hardware can be affected by several phenomena (e.g., wear out of the device), producing permanent defects in the GPU. These defects may induce wrong outcomes in the CNN that may endanger the application. Traditionally, the study of the effects of permanent faults on CNNs has been approached by resorting to application-level fault injection (e.g., acting on the weights). However, this approach has restricted scope, and it may not reveal the actual vulnerabilities in the GPU device. Hence, a more accurate evaluation of the fault effects is required, considering more in-depth details of the device’s hardware. This work introduces a more elaborated experimental evaluation of the impact of GPU’s permanent faults on the reliability of a CNN by resorting to a Software-Implemented Fault Injection(SWIFI) strategy, considering faults at the hardware level. The results of the fault simulation campaigns we performed on the GPU data-path cores are compared with those at the application level, proving that the latter ones are generally optimistic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural Test Generation for AI Accelerators using Neural Twins Radiation-induced Effects on DMA Data Transfer in Reconfigurable Devices Functional and Timing Implications of Transient Faults in Critical Systems All Digital Low-Cost Built-in Defect Testing Strategy for Operational Amplifiers with High Coverage IOLTS 2022 Cover Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1