欧元区的数据异常值和贝叶斯var

Luis J. Álvarez Florens Odendahl, G. López-Espinosa
{"title":"欧元区的数据异常值和贝叶斯var","authors":"Luis J. Álvarez Florens Odendahl, G. López-Espinosa","doi":"10.53479/23552","DOIUrl":null,"url":null,"abstract":"We propose a method to adjust for data outliers in Bayesian Vector Autoregressions (BVARs), which allows for different outlier magnitudes across variables and rescales the reduced form error terms. We use the method to document several facts about the effect of outliers on estimation and out-of-sample forecasting results using euro area macroeconomic data. First, the COVID-19 pandemic led to large swings in macroeconomic data that distort the BVAR estimation results. Second, these swings can be addressed by rescaling the shocks’ variance. Third, taking into account outliers before 2020 leads to mild improvements in the point forecasts of BVARs for some variables and horizons. However, the density forecast performance considerably deteriorates. Therefore, we recommend taking into account outliers only on pre-specified dates around the onset of the COVID-19 pandemic.","PeriodicalId":296461,"journal":{"name":"Documentos de Trabajo","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Data outliers and Bayesian VARs in the euro area\",\"authors\":\"Luis J. Álvarez Florens Odendahl, G. López-Espinosa\",\"doi\":\"10.53479/23552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method to adjust for data outliers in Bayesian Vector Autoregressions (BVARs), which allows for different outlier magnitudes across variables and rescales the reduced form error terms. We use the method to document several facts about the effect of outliers on estimation and out-of-sample forecasting results using euro area macroeconomic data. First, the COVID-19 pandemic led to large swings in macroeconomic data that distort the BVAR estimation results. Second, these swings can be addressed by rescaling the shocks’ variance. Third, taking into account outliers before 2020 leads to mild improvements in the point forecasts of BVARs for some variables and horizons. However, the density forecast performance considerably deteriorates. Therefore, we recommend taking into account outliers only on pre-specified dates around the onset of the COVID-19 pandemic.\",\"PeriodicalId\":296461,\"journal\":{\"name\":\"Documentos de Trabajo\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documentos de Trabajo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53479/23552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documentos de Trabajo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53479/23552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们提出了一种在贝叶斯向量自回归(bvar)中调整数据异常值的方法,该方法允许不同变量之间的异常值大小,并重新缩放简化形式误差项。我们使用该方法记录了关于使用欧元区宏观经济数据的异常值对估计和样本外预测结果的影响的几个事实。首先,新冠肺炎疫情导致宏观经济数据大幅波动,扭曲了BVAR估计结果。其次,这些波动可以通过调整冲击的方差来解决。第三,考虑到2020年之前的异常值会导致bvar对某些变量和范围的点预测略有改善。然而,密度预测的性能明显变差。因此,我们建议仅在COVID-19大流行发病前后的预先指定日期考虑异常值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data outliers and Bayesian VARs in the euro area
We propose a method to adjust for data outliers in Bayesian Vector Autoregressions (BVARs), which allows for different outlier magnitudes across variables and rescales the reduced form error terms. We use the method to document several facts about the effect of outliers on estimation and out-of-sample forecasting results using euro area macroeconomic data. First, the COVID-19 pandemic led to large swings in macroeconomic data that distort the BVAR estimation results. Second, these swings can be addressed by rescaling the shocks’ variance. Third, taking into account outliers before 2020 leads to mild improvements in the point forecasts of BVARs for some variables and horizons. However, the density forecast performance considerably deteriorates. Therefore, we recommend taking into account outliers only on pre-specified dates around the onset of the COVID-19 pandemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Green energy transition and vulnerability to external shocks Access to credit and firm survival during a crisis: the case of zero-bank-debt firms Shadow seniority? Lending relationships and borrowers’ selective default Stabilisation properties of a sure-like European unemployment insurance The effects of the ECB’s unconventional monetary policies from 2011 to 2018 on banking assets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1