面向对象程序中分段函数的最优回归算法

Juan Luo, A. Brodsky
{"title":"面向对象程序中分段函数的最优回归算法","authors":"Juan Luo, A. Brodsky","doi":"10.1109/ICMLA.2010.149","DOIUrl":null,"url":null,"abstract":"Core Java is a framework which extends the programming language Java with built-in regression analysis, i.e., the capability to do parameter estimation for a function. Core Java is unique in that functional forms for regression analysis are expressed as first-class citizens, i.e., as Java programs, in which some parameters are not a priori known, but need to be learned from training sets provided as input. Typical applications of Core Java include calibration of parameters of computational processes, described as OO programs. If-then-else statements of Java language are naturally adopted to create piecewise functional forms of regression. Thus, minimization of the sum of least squared errors involves an optimization problem with a search space that is exponential to the size of learning set. In this paper, we propose a combinatorial restructuring algorithm which guarantees learning optimality and furthermore reduces the search space to be polynomial in the size of learning set, but exponential to the number of piece-wise bounds.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An Optimal Regression Algorithm for Piecewise Functions Expressed as Object-Oriented Programs\",\"authors\":\"Juan Luo, A. Brodsky\",\"doi\":\"10.1109/ICMLA.2010.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Core Java is a framework which extends the programming language Java with built-in regression analysis, i.e., the capability to do parameter estimation for a function. Core Java is unique in that functional forms for regression analysis are expressed as first-class citizens, i.e., as Java programs, in which some parameters are not a priori known, but need to be learned from training sets provided as input. Typical applications of Core Java include calibration of parameters of computational processes, described as OO programs. If-then-else statements of Java language are naturally adopted to create piecewise functional forms of regression. Thus, minimization of the sum of least squared errors involves an optimization problem with a search space that is exponential to the size of learning set. In this paper, we propose a combinatorial restructuring algorithm which guarantees learning optimality and furthermore reduces the search space to be polynomial in the size of learning set, but exponential to the number of piece-wise bounds.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

Core Java是一个框架,它扩展了编程语言Java,内置了回归分析功能,即对函数进行参数估计的能力。Core Java的独特之处在于回归分析的函数形式被表示为一等公民,即Java程序,其中一些参数不是先验已知的,而是需要从作为输入提供的训练集中学习。Core Java的典型应用包括计算过程的参数校准,称为OO程序。自然地采用Java语言的If-then-else语句来创建分段函数形式的回归。因此,最小二乘误差和的最小化涉及一个搜索空间的优化问题,该搜索空间与学习集的大小呈指数关系。在本文中,我们提出了一种组合重构算法,该算法保证了学习的最优性,并进一步将搜索空间缩减为学习集大小的多项式,而分片界的数量是指数的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Optimal Regression Algorithm for Piecewise Functions Expressed as Object-Oriented Programs
Core Java is a framework which extends the programming language Java with built-in regression analysis, i.e., the capability to do parameter estimation for a function. Core Java is unique in that functional forms for regression analysis are expressed as first-class citizens, i.e., as Java programs, in which some parameters are not a priori known, but need to be learned from training sets provided as input. Typical applications of Core Java include calibration of parameters of computational processes, described as OO programs. If-then-else statements of Java language are naturally adopted to create piecewise functional forms of regression. Thus, minimization of the sum of least squared errors involves an optimization problem with a search space that is exponential to the size of learning set. In this paper, we propose a combinatorial restructuring algorithm which guarantees learning optimality and furthermore reduces the search space to be polynomial in the size of learning set, but exponential to the number of piece-wise bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of DNA Microarray Data through the Use of Feature Selection Techniques Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds Bayesian Inferences and Forecasting in Spatial Time Series Models A Framework for Comprehensive Electronic QA in Radiation Therapy Model-Based Co-clustering for Continuous Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1