用辛算法模拟Schrödinger方程中包络孤子的运动和相互作用

Lianyou Lai, Weijian Xu
{"title":"用辛算法模拟Schrödinger方程中包络孤子的运动和相互作用","authors":"Lianyou Lai, Weijian Xu","doi":"10.11648/J.AJPA.20190701.11","DOIUrl":null,"url":null,"abstract":"The expression of Gaussian envelope soliton in Schrodinger equations are given and proved in this paper. According to the characteristics of the Gauss envelope soliton, further proposed that the interaction between Gaussian envelope solitons exists in Schrodinger equation. The symplectic algorithm for solving Schrodinger equation is proposed after analysis characteristics of Schrodinger equation. First, the Schrodinger equation is transformed into the standard Hamiltonian canonical equation by separating the real and imaginary parts of wave function. Secondly, the symplectic algorithm is implemented by using the Euler center difference method for the canonical equation. The conserved quantity of symplectic algorithm is given, and the stability of symplectic algorithm is proved. The numerical simulation experiment was carried out on Schrodinger equation in Gauss envelope soliton motion and multi solitons interaction. The experimental results show that the proposed method is correct and the symplectic algorithm is effective.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion and Interaction of Envelope Solitons in Schrödinger Equation Simulated by Symplectic Algorithm\",\"authors\":\"Lianyou Lai, Weijian Xu\",\"doi\":\"10.11648/J.AJPA.20190701.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The expression of Gaussian envelope soliton in Schrodinger equations are given and proved in this paper. According to the characteristics of the Gauss envelope soliton, further proposed that the interaction between Gaussian envelope solitons exists in Schrodinger equation. The symplectic algorithm for solving Schrodinger equation is proposed after analysis characteristics of Schrodinger equation. First, the Schrodinger equation is transformed into the standard Hamiltonian canonical equation by separating the real and imaginary parts of wave function. Secondly, the symplectic algorithm is implemented by using the Euler center difference method for the canonical equation. The conserved quantity of symplectic algorithm is given, and the stability of symplectic algorithm is proved. The numerical simulation experiment was carried out on Schrodinger equation in Gauss envelope soliton motion and multi solitons interaction. The experimental results show that the proposed method is correct and the symplectic algorithm is effective.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJPA.20190701.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20190701.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出并证明了高斯包络孤子在薛定谔方程中的表达式。根据高斯包络孤子的特性,进一步提出了在薛定谔方程中存在高斯包络孤子之间的相互作用。在分析了薛定谔方程的特点后,提出了求解薛定谔方程的辛算法。首先,通过分离波函数的实部和虚部,将薛定谔方程转化为标准哈密顿正则方程。其次,对典型方程采用欧拉中心差分法实现辛算法。给出了辛算法的守恒量,并证明了辛算法的稳定性。对高斯包络孤子运动中的薛定谔方程和多孤子相互作用进行了数值模拟实验。实验结果表明,该方法是正确的,辛算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion and Interaction of Envelope Solitons in Schrödinger Equation Simulated by Symplectic Algorithm
The expression of Gaussian envelope soliton in Schrodinger equations are given and proved in this paper. According to the characteristics of the Gauss envelope soliton, further proposed that the interaction between Gaussian envelope solitons exists in Schrodinger equation. The symplectic algorithm for solving Schrodinger equation is proposed after analysis characteristics of Schrodinger equation. First, the Schrodinger equation is transformed into the standard Hamiltonian canonical equation by separating the real and imaginary parts of wave function. Secondly, the symplectic algorithm is implemented by using the Euler center difference method for the canonical equation. The conserved quantity of symplectic algorithm is given, and the stability of symplectic algorithm is proved. The numerical simulation experiment was carried out on Schrodinger equation in Gauss envelope soliton motion and multi solitons interaction. The experimental results show that the proposed method is correct and the symplectic algorithm is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of High Gain Single Stage Telescopic Cmos Operational Amplifier Evaluation of the Risk Associated with Drinkable Water Sources Through Analysis of Gross Alpha and Beta Radioactivity Levels in Chosen Locations, Mubi – North Heat Transfer Behavior of a PTC Receiver Tube Using Transversal Focal Inserts and CFD Electronic and Mechanical Properties of Chemical Bonds (A-O & B-O) in Cubic Phase A+2B+4O3 Perovskite Oxides An Energy Criterion for Rheological Failure of Rock and Application in Stability Analysis of Natural High Slope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1