92 & # 162;/MFlops/s, PIII集群上的超大规模神经网络训练

Douglas Aberdeen, Jonathan Baxter, R. Edwards
{"title":"92 & # 162;/MFlops/s, PIII集群上的超大规模神经网络训练","authors":"Douglas Aberdeen, Jonathan Baxter, R. Edwards","doi":"10.1109/SC.2000.10031","DOIUrl":null,"url":null,"abstract":"Artificial neural networks with millions of adjustable parameters and a similar number of training examples are a potential solution for difficult, large-scale pattern recognition problems in areas such as speech and face recognition, classification of large volumes of web data, and finance. The bottleneck is that neural network training involves iterative gradient descent and is extremely computationally intensive. In this paper we present a technique for distributed training of Ultra Large Scale Neural Networks 1 (ULSNN) on Bunyip, a Linux-based cluster of 196 Pentium III processors. To illustrate ULSNN training we describe an experiment in which a neural network with 1.73 million adjustable parameters was trained to recognize machine-printed Japanese characters from a database containing 9 million training patterns. The training runs with a average performance of 163.3 GFlops/s (single precision). With a machine cost of $150,913, this yields a price/performance ratio of 92.4¢ /MFlops/s (single precision). For comparison purposes, training using double precision and the ATLAS DGEMM produces a sustained performance of 70 MFlops/s or $2.16 / MFlop/s (double precision).","PeriodicalId":228250,"journal":{"name":"ACM/IEEE SC 2000 Conference (SC'00)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"92¢ /MFlops/s, Ultra-Large-Scale Neural-Network Training on a PIII Cluster\",\"authors\":\"Douglas Aberdeen, Jonathan Baxter, R. Edwards\",\"doi\":\"10.1109/SC.2000.10031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neural networks with millions of adjustable parameters and a similar number of training examples are a potential solution for difficult, large-scale pattern recognition problems in areas such as speech and face recognition, classification of large volumes of web data, and finance. The bottleneck is that neural network training involves iterative gradient descent and is extremely computationally intensive. In this paper we present a technique for distributed training of Ultra Large Scale Neural Networks 1 (ULSNN) on Bunyip, a Linux-based cluster of 196 Pentium III processors. To illustrate ULSNN training we describe an experiment in which a neural network with 1.73 million adjustable parameters was trained to recognize machine-printed Japanese characters from a database containing 9 million training patterns. The training runs with a average performance of 163.3 GFlops/s (single precision). With a machine cost of $150,913, this yields a price/performance ratio of 92.4¢ /MFlops/s (single precision). For comparison purposes, training using double precision and the ATLAS DGEMM produces a sustained performance of 70 MFlops/s or $2.16 / MFlop/s (double precision).\",\"PeriodicalId\":228250,\"journal\":{\"name\":\"ACM/IEEE SC 2000 Conference (SC'00)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2000 Conference (SC'00)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2000.10031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2000 Conference (SC'00)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2000.10031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

人工神经网络具有数百万个可调参数和类似数量的训练示例,是解决语音和人脸识别、大量网络数据分类和金融等领域中困难的大规模模式识别问题的潜在解决方案。瓶颈在于神经网络训练涉及迭代梯度下降,计算量极大。在本文中,我们提出了一种在Bunyip(一个基于linux的196个Pentium III处理器集群)上分布式训练超大规模神经网络1 (ULSNN)的技术。为了说明ULSNN训练,我们描述了一个实验,其中训练了一个具有173万个可调参数的神经网络,以从包含900万个训练模式的数据库中识别机器打印的日文字符。训练的平均性能为163.3 GFlops/s(单精度)。机器成本为150,913美元,这产生了92.4美分/MFlops/s(单精度)的性价比。为了进行比较,使用双精度和ATLAS DGEMM的训练产生的持续性能为70 MFlop/s或2.16美元/ MFlop/s(双精度)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
92¢ /MFlops/s, Ultra-Large-Scale Neural-Network Training on a PIII Cluster
Artificial neural networks with millions of adjustable parameters and a similar number of training examples are a potential solution for difficult, large-scale pattern recognition problems in areas such as speech and face recognition, classification of large volumes of web data, and finance. The bottleneck is that neural network training involves iterative gradient descent and is extremely computationally intensive. In this paper we present a technique for distributed training of Ultra Large Scale Neural Networks 1 (ULSNN) on Bunyip, a Linux-based cluster of 196 Pentium III processors. To illustrate ULSNN training we describe an experiment in which a neural network with 1.73 million adjustable parameters was trained to recognize machine-printed Japanese characters from a database containing 9 million training patterns. The training runs with a average performance of 163.3 GFlops/s (single precision). With a machine cost of $150,913, this yields a price/performance ratio of 92.4¢ /MFlops/s (single precision). For comparison purposes, training using double precision and the ATLAS DGEMM produces a sustained performance of 70 MFlops/s or $2.16 / MFlop/s (double precision).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Object-Oriented Job Execution Environment Automatically Tuned Collective Communications Architectural and Performance Evaluation of GigaNet and Myrinet Interconnects on Clusters of Small-Scale SMP Servers Parallel Smoothed Aggregation Multigrid : Aggregation Strategies on Massively Parallel Machines High-Cost CFD on a Low-Cost Cluster
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1