利用交替贪婪去除和放置的最优传感器放置

Daniel Frisch, Kailai Li, U. Hanebeck
{"title":"利用交替贪婪去除和放置的最优传感器放置","authors":"Daniel Frisch, Kailai Li, U. Hanebeck","doi":"10.1109/MFI55806.2022.9913847","DOIUrl":null,"url":null,"abstract":"We present a novel algorithm for optimal sensor placement in multilateration problems. Our goal is to design a sensor network that achieves optimal localization accuracy anywhere in the covered region. We consider the discrete placement problem, where the possible locations of the sensors are selected from a discrete set. Thus, we obtain a combinatorial optimization problem instead of a continuous one. While at first, combinatorial optimization sounds like more effort, we present an algorithm that finds a globally optimal solution surprisingly quickly.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Sensor Placement for Multilateration Using Alternating Greedy Removal and Placement\",\"authors\":\"Daniel Frisch, Kailai Li, U. Hanebeck\",\"doi\":\"10.1109/MFI55806.2022.9913847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel algorithm for optimal sensor placement in multilateration problems. Our goal is to design a sensor network that achieves optimal localization accuracy anywhere in the covered region. We consider the discrete placement problem, where the possible locations of the sensors are selected from a discrete set. Thus, we obtain a combinatorial optimization problem instead of a continuous one. While at first, combinatorial optimization sounds like more effort, we present an algorithm that finds a globally optimal solution surprisingly quickly.\",\"PeriodicalId\":344737,\"journal\":{\"name\":\"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI55806.2022.9913847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的算法来优化传感器的放置。我们的目标是设计一个传感器网络,在覆盖区域的任何地方都能达到最佳的定位精度。我们考虑的是离散放置问题,其中传感器的可能位置是从一个离散集合中选择的。因此,我们得到的是一个组合优化问题,而不是一个连续优化问题。虽然一开始,组合优化听起来更费力,但我们提出了一种算法,可以惊人地快速找到全局最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Sensor Placement for Multilateration Using Alternating Greedy Removal and Placement
We present a novel algorithm for optimal sensor placement in multilateration problems. Our goal is to design a sensor network that achieves optimal localization accuracy anywhere in the covered region. We consider the discrete placement problem, where the possible locations of the sensors are selected from a discrete set. Thus, we obtain a combinatorial optimization problem instead of a continuous one. While at first, combinatorial optimization sounds like more effort, we present an algorithm that finds a globally optimal solution surprisingly quickly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regression with Ensemble of RANSAC in Camera-LiDAR Fusion for Road Boundary Detection and Modeling Global-local Feature Aggregation for Event-based Object Detection on EventKITTI Predicting Autonomous Vehicle Navigation Parameters via Image and Image-and-Point Cloud Fusion-based End-to-End Methods Perception-aware Receding Horizon Path Planning for UAVs with LiDAR-based SLAM PIPO: Policy Optimization with Permutation-Invariant Constraint for Distributed Multi-Robot Navigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1