道路车辆跟踪的偏置校正光流估计

H. Nagel, M. Haag
{"title":"道路车辆跟踪的偏置校正光流估计","authors":"H. Nagel, M. Haag","doi":"10.1109/ICCV.1998.710839","DOIUrl":null,"url":null,"abstract":"Model-based vehicle tracking in traffic image sequences can be made more robust by matching expected displacement rates of vehicle surface points to optical flow (OF) vectors computed from an image sequence. The capability to track vehicles uninterruptedly in this manner over extended image sequences results in the ability to investigate even small errors in OF estimation. It turns out that the OF magnitudes are systematically underestimated. The-albeit small-bias can be corrected by analyzing the influence of explicitly modeled grey value noise on the precision of OF values estimated by means of the neighborhood sampling method.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Bias-corrected optical flow estimation for road vehicle tracking\",\"authors\":\"H. Nagel, M. Haag\",\"doi\":\"10.1109/ICCV.1998.710839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-based vehicle tracking in traffic image sequences can be made more robust by matching expected displacement rates of vehicle surface points to optical flow (OF) vectors computed from an image sequence. The capability to track vehicles uninterruptedly in this manner over extended image sequences results in the ability to investigate even small errors in OF estimation. It turns out that the OF magnitudes are systematically underestimated. The-albeit small-bias can be corrected by analyzing the influence of explicitly modeled grey value noise on the precision of OF values estimated by means of the neighborhood sampling method.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

通过将车辆表面点的期望位移率与从图像序列中计算出的光流向量相匹配,可以提高基于模型的交通图像序列车辆跟踪的鲁棒性。以这种方式在扩展的图像序列上不间断地跟踪车辆的能力导致能够调查估计中的小误差。事实证明,地震震级被系统性地低估了。通过分析显式建模的灰度值噪声对邻域抽样法估计of值精度的影响,可以纠正尽管小的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bias-corrected optical flow estimation for road vehicle tracking
Model-based vehicle tracking in traffic image sequences can be made more robust by matching expected displacement rates of vehicle surface points to optical flow (OF) vectors computed from an image sequence. The capability to track vehicles uninterruptedly in this manner over extended image sequences results in the ability to investigate even small errors in OF estimation. It turns out that the OF magnitudes are systematically underestimated. The-albeit small-bias can be corrected by analyzing the influence of explicitly modeled grey value noise on the precision of OF values estimated by means of the neighborhood sampling method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing and evaluating interest points Snake pedals: geometric models with physics-based control Recovering epipolar geometry by reactive tabu search Utilization of stereo disparity and optical flow information for human interaction Intensity and feature based stereo matching by disparity parameterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1