医学文本数据的拼写错误检测和去噪资源

Enrico Mensa, G. Marino, Davide Colla, Matteo Delsanto, Daniele P. Radicioni
{"title":"医学文本数据的拼写错误检测和去噪资源","authors":"Enrico Mensa, G. Marino, Davide Colla, Matteo Delsanto, Daniele P. Radicioni","doi":"10.4000/books.aaccademia.8728","DOIUrl":null,"url":null,"abstract":"English. In this paper we propose a method for collecting a dictionary to deal with noisy medical text documents. The quality of such Italian Emergency Room Reports is so poor that in most cases these can be hardly automatically elaborated; this also holds for other languages (e.g., English), with the notable difference that no Italian dictionary has been proposed to deal with this jargon. In this work we introduce and evaluate a resource designed to fill this gap.1 Italiano. In questo lavoro illustriamo un metodo per la costruzione di un dizionario dedicato all’elaborazione di documenti medici, la porzione delle cartelle cliniche annotata nei reparti di pronto soccorso. Questo tipo di documenti è cosı̀ rumoroso che in genere le cartelle cliniche difficilmente posono essere direttamente elaborate in maniera automatica. Pur essendo il problema di ripulire questo tipo di documenti un problema rilevante e diffuso, non esisteva un dizionario completo per trattare questo linguaggio settoriale. In questo lavoro proponiamo e valutiamo una risorsa finalizzata a condurre questo tipo di elaborazione sulle cartelle cliniche.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Resource for Detecting Misspellings and Denoising Medical Text Data\",\"authors\":\"Enrico Mensa, G. Marino, Davide Colla, Matteo Delsanto, Daniele P. Radicioni\",\"doi\":\"10.4000/books.aaccademia.8728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"English. In this paper we propose a method for collecting a dictionary to deal with noisy medical text documents. The quality of such Italian Emergency Room Reports is so poor that in most cases these can be hardly automatically elaborated; this also holds for other languages (e.g., English), with the notable difference that no Italian dictionary has been proposed to deal with this jargon. In this work we introduce and evaluate a resource designed to fill this gap.1 Italiano. In questo lavoro illustriamo un metodo per la costruzione di un dizionario dedicato all’elaborazione di documenti medici, la porzione delle cartelle cliniche annotata nei reparti di pronto soccorso. Questo tipo di documenti è cosı̀ rumoroso che in genere le cartelle cliniche difficilmente posono essere direttamente elaborate in maniera automatica. Pur essendo il problema di ripulire questo tipo di documenti un problema rilevante e diffuso, non esisteva un dizionario completo per trattare questo linguaggio settoriale. In questo lavoro proponiamo e valutiamo una risorsa finalizzata a condurre questo tipo di elaborazione sulle cartelle cliniche.\",\"PeriodicalId\":300279,\"journal\":{\"name\":\"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/books.aaccademia.8728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/books.aaccademia.8728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

English。在这份文件中,我们提出了一种收集一份措辞强硬的医学文本文件的方法。像这样的意大利紧急情况室报告的质量如此之差,以至于在大多数情况下,这些文件几乎无法自动处理;这也是对其他语言的保留,与此有明显的区别在这项工作中,我们介绍并评估了旨在填补这一空白的资源意大利。在这项工作中,我们提出了一种建立一本专门用于处理医疗记录的词典的方法,即在急诊室记录的医疗记录的一部分。这类文件是cosı̀嘈杂,一般来说,很难病历直接自动的方式处理的。虽然清理这类文件的问题是一个重要和广泛的问题,但没有完整的字典来处理这种部门语言。在这项工作中,我们建议并评估一种资源,以便在医疗记录中进行这种处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Resource for Detecting Misspellings and Denoising Medical Text Data
English. In this paper we propose a method for collecting a dictionary to deal with noisy medical text documents. The quality of such Italian Emergency Room Reports is so poor that in most cases these can be hardly automatically elaborated; this also holds for other languages (e.g., English), with the notable difference that no Italian dictionary has been proposed to deal with this jargon. In this work we introduce and evaluate a resource designed to fill this gap.1 Italiano. In questo lavoro illustriamo un metodo per la costruzione di un dizionario dedicato all’elaborazione di documenti medici, la porzione delle cartelle cliniche annotata nei reparti di pronto soccorso. Questo tipo di documenti è cosı̀ rumoroso che in genere le cartelle cliniche difficilmente posono essere direttamente elaborate in maniera automatica. Pur essendo il problema di ripulire questo tipo di documenti un problema rilevante e diffuso, non esisteva un dizionario completo per trattare questo linguaggio settoriale. In questo lavoro proponiamo e valutiamo una risorsa finalizzata a condurre questo tipo di elaborazione sulle cartelle cliniche.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Case Study of Natural Gender Phenomena in Translation. A Comparison of Google Translate, Bing Microsoft Translator and DeepL for English to Italian, French and Spanish How Granularity of Orthography-Phonology Mappings Affect Reading Development: Evidence from a Computational Model of English Word Reading and Spelling Creativity Embedding: A Vector to Characterise and Classify Plausible Triples in Deep Learning NLP Models (Stem and Word) Predictability in Italian Verb Paradigms: An Entropy-Based Study Exploiting the New Resource LeFFI Dialog-based Help Desk through Automated Question Answering and Intent Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1