基于线性时频分析的高分辨率单变量SAR图像多变量变化检测

A. Mian, J. Ovarlez, G. Ginolhac, A. Atto
{"title":"基于线性时频分析的高分辨率单变量SAR图像多变量变化检测","authors":"A. Mian, J. Ovarlez, G. Ginolhac, A. Atto","doi":"10.23919/EUSIPCO.2017.8081548","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel methodology for Change Detection between two monovariate complex SAR images. Linear Time-Frequency tools are used in order to recover a spectral and angular diversity of the scatterers present in the scene. This diversity is used in bi-date change detection framework to develop a detector, whose performances are better than the classic detector on monovariate SAR images.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multivariate change detection on high resolution monovariate SAR image using linear time-frequency analysis\",\"authors\":\"A. Mian, J. Ovarlez, G. Ginolhac, A. Atto\",\"doi\":\"10.23919/EUSIPCO.2017.8081548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel methodology for Change Detection between two monovariate complex SAR images. Linear Time-Frequency tools are used in order to recover a spectral and angular diversity of the scatterers present in the scene. This diversity is used in bi-date change detection framework to develop a detector, whose performances are better than the classic detector on monovariate SAR images.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一种新的方法来检测两个单变量复杂SAR图像之间的变化。线性时频工具用于恢复场景中存在的散射体的光谱和角度多样性。将这种多样性应用于双数据变化检测框架中,开发了一种检测器,该检测器在单变量SAR图像上的性能优于经典检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multivariate change detection on high resolution monovariate SAR image using linear time-frequency analysis
In this paper, we propose a novel methodology for Change Detection between two monovariate complex SAR images. Linear Time-Frequency tools are used in order to recover a spectral and angular diversity of the scatterers present in the scene. This diversity is used in bi-date change detection framework to develop a detector, whose performances are better than the classic detector on monovariate SAR images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1