使用子空间方法的状态空间建模的统计观点

M. Viberg, B. Ottersten, B. Wahlberg, L. Ljung
{"title":"使用子空间方法的状态空间建模的统计观点","authors":"M. Viberg, B. Ottersten, B. Wahlberg, L. Ljung","doi":"10.1109/CDC.1991.261612","DOIUrl":null,"url":null,"abstract":"The authors investigate aspects of subspace-based state-space identification techniques from a statistical perspective. They concentrate their efforts on a simple approach which is based on finding the range-space of the observability matrix of a state-space representation. The system description is then found using the shift-invariance property of the observability matrix. It is shown that this results in a consistent system description for multivariable output-error models if the measurement noise is white in time and independent from output to output. The asymptotic covariance of the estimated poles of the system is also derived. In the test case studied, the subspace technique performs comparably with the statistically efficient PE (prediction error) method, whereas the instrumental variable method does notably worse. Hence, the subspace technique may be a strong candidate for determining initial values for the optimization in the efficient PE method.<<ETX>>","PeriodicalId":344553,"journal":{"name":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"A statistical perspective on state-space modeling using subspace methods\",\"authors\":\"M. Viberg, B. Ottersten, B. Wahlberg, L. Ljung\",\"doi\":\"10.1109/CDC.1991.261612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors investigate aspects of subspace-based state-space identification techniques from a statistical perspective. They concentrate their efforts on a simple approach which is based on finding the range-space of the observability matrix of a state-space representation. The system description is then found using the shift-invariance property of the observability matrix. It is shown that this results in a consistent system description for multivariable output-error models if the measurement noise is white in time and independent from output to output. The asymptotic covariance of the estimated poles of the system is also derived. In the test case studied, the subspace technique performs comparably with the statistically efficient PE (prediction error) method, whereas the instrumental variable method does notably worse. Hence, the subspace technique may be a strong candidate for determining initial values for the optimization in the efficient PE method.<<ETX>>\",\"PeriodicalId\":344553,\"journal\":{\"name\":\"[1991] Proceedings of the 30th IEEE Conference on Decision and Control\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the 30th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1991.261612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1991.261612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

作者从统计的角度研究了基于子空间的状态空间识别技术。他们将精力集中在一种简单的方法上,该方法基于寻找状态空间表示的可观察性矩阵的范围空间。然后利用可观测矩阵的平移不变性找到系统描述。结果表明,如果测量噪声在时间上是白的,并且在输出到输出之间是独立的,那么这将导致多变量输出误差模型的一致系统描述。导出了系统估计极点的渐近协方差。在研究的测试用例中,子空间技术的性能与统计上有效的PE(预测误差)方法相当,而工具变量方法的性能明显更差。因此,子空间技术可能是确定高效PE方法中优化的初始值的有力候选
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A statistical perspective on state-space modeling using subspace methods
The authors investigate aspects of subspace-based state-space identification techniques from a statistical perspective. They concentrate their efforts on a simple approach which is based on finding the range-space of the observability matrix of a state-space representation. The system description is then found using the shift-invariance property of the observability matrix. It is shown that this results in a consistent system description for multivariable output-error models if the measurement noise is white in time and independent from output to output. The asymptotic covariance of the estimated poles of the system is also derived. In the test case studied, the subspace technique performs comparably with the statistically efficient PE (prediction error) method, whereas the instrumental variable method does notably worse. Hence, the subspace technique may be a strong candidate for determining initial values for the optimization in the efficient PE method.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic scheduling of modern-robust-control autopilot designs for missiles Spillover, nonlinearity and flexible structures Parallel design of suboptimal regulators for singularly perturbed systems with multiple-time scales Stabilizing controllers for systems with sensor or actuator failures Repeatable generalized inverse control strategies for kinematically redundant manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1