电力变压器顶油温度建模的软计算技术

Huy Huynh Nguyen, G. Baxter, L. Reznik
{"title":"电力变压器顶油温度建模的软计算技术","authors":"Huy Huynh Nguyen, G. Baxter, L. Reznik","doi":"10.1109/ISAP.2007.4441618","DOIUrl":null,"url":null,"abstract":"This paper presents an investigation and a comparative study of four different approaches namely ANSI/IEEE standard methods, Adaptive Neuro-Fuzzy Inference System (ANFIS), Multilayer Feedforward Neural Network (MFNN) and Elman Recurrent Neural Network (ERNN) to modeling and prediction of the top-oil temperature for the 8 MVA Oil Air (OA)-cooled and 27 MVA Forced Air (FA)-cooled class of power transformers. A comparison of the proposed techniques is presented for predicting top-oil temperature based on the historical data measured over a 35 day period for the first transformer and 4.5 days for the second transformer with either a half or a quarter hour sampling time. Comparison results indicate that hybrid neuro-fuzzy network is the best candidate for the analysis and predicting of power transformer top-oil temperature. The ANFIS demonstrated the paramount performance in temperature prediction in terms of Root Mean Square Error (RMSE) and peaks of error.","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Soft Computing Techniques to Model the Top-oil Temperature of Power Transformers\",\"authors\":\"Huy Huynh Nguyen, G. Baxter, L. Reznik\",\"doi\":\"10.1109/ISAP.2007.4441618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an investigation and a comparative study of four different approaches namely ANSI/IEEE standard methods, Adaptive Neuro-Fuzzy Inference System (ANFIS), Multilayer Feedforward Neural Network (MFNN) and Elman Recurrent Neural Network (ERNN) to modeling and prediction of the top-oil temperature for the 8 MVA Oil Air (OA)-cooled and 27 MVA Forced Air (FA)-cooled class of power transformers. A comparison of the proposed techniques is presented for predicting top-oil temperature based on the historical data measured over a 35 day period for the first transformer and 4.5 days for the second transformer with either a half or a quarter hour sampling time. Comparison results indicate that hybrid neuro-fuzzy network is the best candidate for the analysis and predicting of power transformer top-oil temperature. The ANFIS demonstrated the paramount performance in temperature prediction in terms of Root Mean Square Error (RMSE) and peaks of error.\",\"PeriodicalId\":320068,\"journal\":{\"name\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2007.4441618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文对ANSI/IEEE标准方法、自适应神经模糊推理系统(ANFIS)、多层前馈神经网络(MFNN)和Elman递归神经网络(ERNN)四种不同的方法进行了调查和比较研究,用于8 MVA油冷(OA)和27 MVA强制空气(FA)冷却类电力变压器的顶油温度建模和预测。本文介绍了基于历史数据预测顶油温度的几种方法的比较,这些数据是基于第一个变压器35天的历史数据和第二个变压器4.5天的历史数据,采样时间为半小时或四分之一小时。对比结果表明,混合神经模糊网络是电力变压器顶油温度分析与预测的最佳选择。在均方根误差(RMSE)和误差峰方面,ANFIS在温度预测方面表现出了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soft Computing Techniques to Model the Top-oil Temperature of Power Transformers
This paper presents an investigation and a comparative study of four different approaches namely ANSI/IEEE standard methods, Adaptive Neuro-Fuzzy Inference System (ANFIS), Multilayer Feedforward Neural Network (MFNN) and Elman Recurrent Neural Network (ERNN) to modeling and prediction of the top-oil temperature for the 8 MVA Oil Air (OA)-cooled and 27 MVA Forced Air (FA)-cooled class of power transformers. A comparison of the proposed techniques is presented for predicting top-oil temperature based on the historical data measured over a 35 day period for the first transformer and 4.5 days for the second transformer with either a half or a quarter hour sampling time. Comparison results indicate that hybrid neuro-fuzzy network is the best candidate for the analysis and predicting of power transformer top-oil temperature. The ANFIS demonstrated the paramount performance in temperature prediction in terms of Root Mean Square Error (RMSE) and peaks of error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Online Estimate of System Parameters For Adaptive Tuning on Automatic Generation Control Exploiting Multi-agent System Technology within an Autonomous Regional Active Network Management System PC Cluster based Parallel PSO Algorithm for Optimal Power Flow MFFN based Static Synchronous Series Compensator (SSSC) for Transient Stability improvement Reactive Power Management in Offshore Wind Farms by Adaptive PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1