Folgert Karsdorp, M. Kestemont, Christof Schöch, Antal van den Bosch
{"title":"爱情方程式:法国古典戏剧中浪漫关系的计算模型","authors":"Folgert Karsdorp, M. Kestemont, Christof Schöch, Antal van den Bosch","doi":"10.4230/OASIcs.CMN.2015.98","DOIUrl":null,"url":null,"abstract":"We report on building a computational model of romantic relationships in a corpus of historical literary texts. We frame this task as a ranking problem in which, for a given character, we try to assign the highest rank to the character with whom (s)he is most likely to be romantically involved. As data we use a publicly available corpus of French 17th and 18th century plays (http://www.theatre-classique.fr/) which is well suited for this type of analysis because of the rich markup it provides (e.g. indications of characters speaking). We focus on distributional, so-called second-order features, which capture how speakers are contextually embedded in the texts. At a mean reciprocal rate (MRR) of 0.9 and MRR@1 of 0.81, our results are encouraging, suggesting that this approach might be successfully extended to other forms of social interactions in literature, such as antagonism or social power relations.","PeriodicalId":311534,"journal":{"name":"Workshop on Computational Models of Narrative","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Love Equation: Computational Modeling of Romantic Relationships in French Classical Drama\",\"authors\":\"Folgert Karsdorp, M. Kestemont, Christof Schöch, Antal van den Bosch\",\"doi\":\"10.4230/OASIcs.CMN.2015.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on building a computational model of romantic relationships in a corpus of historical literary texts. We frame this task as a ranking problem in which, for a given character, we try to assign the highest rank to the character with whom (s)he is most likely to be romantically involved. As data we use a publicly available corpus of French 17th and 18th century plays (http://www.theatre-classique.fr/) which is well suited for this type of analysis because of the rich markup it provides (e.g. indications of characters speaking). We focus on distributional, so-called second-order features, which capture how speakers are contextually embedded in the texts. At a mean reciprocal rate (MRR) of 0.9 and MRR@1 of 0.81, our results are encouraging, suggesting that this approach might be successfully extended to other forms of social interactions in literature, such as antagonism or social power relations.\",\"PeriodicalId\":311534,\"journal\":{\"name\":\"Workshop on Computational Models of Narrative\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Computational Models of Narrative\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASIcs.CMN.2015.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Computational Models of Narrative","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.CMN.2015.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Love Equation: Computational Modeling of Romantic Relationships in French Classical Drama
We report on building a computational model of romantic relationships in a corpus of historical literary texts. We frame this task as a ranking problem in which, for a given character, we try to assign the highest rank to the character with whom (s)he is most likely to be romantically involved. As data we use a publicly available corpus of French 17th and 18th century plays (http://www.theatre-classique.fr/) which is well suited for this type of analysis because of the rich markup it provides (e.g. indications of characters speaking). We focus on distributional, so-called second-order features, which capture how speakers are contextually embedded in the texts. At a mean reciprocal rate (MRR) of 0.9 and MRR@1 of 0.81, our results are encouraging, suggesting that this approach might be successfully extended to other forms of social interactions in literature, such as antagonism or social power relations.