{"title":"DNN运算精度的迭代评估与改进","authors":"Antonio Guerriero, R. Pietrantuono, S. Russo","doi":"10.1109/ICSE-NIER58687.2023.00014","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNN) are nowadays largely adopted in many application domains thanks to their human-like, or even superhuman, performance in specific tasks. However, due to unpredictable/unconsidered operating conditions, unexpected failures show up on field, making the performance of a DNN in operation very different from the one estimated prior to release.In the life cycle of DNN systems, the assessment of accuracy is typically addressed in two ways: offline, via sampling of operational inputs, or online, via pseudo-oracles. The former is considered more expensive due to the need for manual labeling of the sampled inputs. The latter is automatic but less accurate.We believe that emerging iterative industrial-strength life cycle models for Machine Learning systems, like MLOps, offer the possibility to leverage inputs observed in operation not only to provide faithful estimates of a DNN accuracy, but also to improve it through remodeling/retraining actions.We propose DAIC (DNN Assessment and Improvement Cycle), an approach which combines \"low-cost\" online pseudo-oracles and \"high-cost\" offline sampling techniques to estimate and improve the operational accuracy of a DNN in the iterations of its life cycle. Preliminary results show the benefits of combining the two approaches and integrating them in the DNN life cycle.","PeriodicalId":297025,"journal":{"name":"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Iterative Assessment and Improvement of DNN Operational Accuracy\",\"authors\":\"Antonio Guerriero, R. Pietrantuono, S. Russo\",\"doi\":\"10.1109/ICSE-NIER58687.2023.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Networks (DNN) are nowadays largely adopted in many application domains thanks to their human-like, or even superhuman, performance in specific tasks. However, due to unpredictable/unconsidered operating conditions, unexpected failures show up on field, making the performance of a DNN in operation very different from the one estimated prior to release.In the life cycle of DNN systems, the assessment of accuracy is typically addressed in two ways: offline, via sampling of operational inputs, or online, via pseudo-oracles. The former is considered more expensive due to the need for manual labeling of the sampled inputs. The latter is automatic but less accurate.We believe that emerging iterative industrial-strength life cycle models for Machine Learning systems, like MLOps, offer the possibility to leverage inputs observed in operation not only to provide faithful estimates of a DNN accuracy, but also to improve it through remodeling/retraining actions.We propose DAIC (DNN Assessment and Improvement Cycle), an approach which combines \\\"low-cost\\\" online pseudo-oracles and \\\"high-cost\\\" offline sampling techniques to estimate and improve the operational accuracy of a DNN in the iterations of its life cycle. Preliminary results show the benefits of combining the two approaches and integrating them in the DNN life cycle.\",\"PeriodicalId\":297025,\"journal\":{\"name\":\"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE-NIER58687.2023.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-NIER58687.2023.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iterative Assessment and Improvement of DNN Operational Accuracy
Deep Neural Networks (DNN) are nowadays largely adopted in many application domains thanks to their human-like, or even superhuman, performance in specific tasks. However, due to unpredictable/unconsidered operating conditions, unexpected failures show up on field, making the performance of a DNN in operation very different from the one estimated prior to release.In the life cycle of DNN systems, the assessment of accuracy is typically addressed in two ways: offline, via sampling of operational inputs, or online, via pseudo-oracles. The former is considered more expensive due to the need for manual labeling of the sampled inputs. The latter is automatic but less accurate.We believe that emerging iterative industrial-strength life cycle models for Machine Learning systems, like MLOps, offer the possibility to leverage inputs observed in operation not only to provide faithful estimates of a DNN accuracy, but also to improve it through remodeling/retraining actions.We propose DAIC (DNN Assessment and Improvement Cycle), an approach which combines "low-cost" online pseudo-oracles and "high-cost" offline sampling techniques to estimate and improve the operational accuracy of a DNN in the iterations of its life cycle. Preliminary results show the benefits of combining the two approaches and integrating them in the DNN life cycle.