电火花加工深微孔

D. Sheu, T. Masuzawa, M. Fujino
{"title":"电火花加工深微孔","authors":"D. Sheu, T. Masuzawa, M. Fujino","doi":"10.2526/JSEME.35.79_32","DOIUrl":null,"url":null,"abstract":"Machining microholes with high aspect ratios has become important in various industrial fields. Since the development of WEDG (wire electro discharge grinding), micro-EDM has been an excellent process for machining microholes in metals and alloys. However problems remain in machining the high-aspect-ratio holes. As the depth of microholes becomes deeper, drilling through the microholes becomes more difficult. In addition, the removal of debris and renewal of dielectric from the machining gap are difficult because unstable discharge and arcing usually result. In this study, the jump flushing system is proposed for drilling microholes with high aspect ratios, by inducing an intermittent jump of the workpiece. The system is assisted by the horizontal main spindle and pure water dielectric. As a result, a 1.5mm-deep hole with the diameter of 100μm was successfully machined in to stainless steel which is one of the more difficult materials in which to drill deep microholes.","PeriodicalId":269071,"journal":{"name":"Journal of the Japan Society of Electrical-machining Engineers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Microholes Machining by EDM\",\"authors\":\"D. Sheu, T. Masuzawa, M. Fujino\",\"doi\":\"10.2526/JSEME.35.79_32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machining microholes with high aspect ratios has become important in various industrial fields. Since the development of WEDG (wire electro discharge grinding), micro-EDM has been an excellent process for machining microholes in metals and alloys. However problems remain in machining the high-aspect-ratio holes. As the depth of microholes becomes deeper, drilling through the microholes becomes more difficult. In addition, the removal of debris and renewal of dielectric from the machining gap are difficult because unstable discharge and arcing usually result. In this study, the jump flushing system is proposed for drilling microholes with high aspect ratios, by inducing an intermittent jump of the workpiece. The system is assisted by the horizontal main spindle and pure water dielectric. As a result, a 1.5mm-deep hole with the diameter of 100μm was successfully machined in to stainless steel which is one of the more difficult materials in which to drill deep microholes.\",\"PeriodicalId\":269071,\"journal\":{\"name\":\"Journal of the Japan Society of Electrical-machining Engineers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Society of Electrical-machining Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2526/JSEME.35.79_32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Society of Electrical-machining Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2526/JSEME.35.79_32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高纵横比微孔的加工已成为各个工业领域的重要内容。自电火花线切割(WEDG)发展以来,微细电火花加工已成为加工金属和合金微孔的一种优良工艺。然而,在高纵横比孔的加工中仍然存在一些问题。随着微孔的深度越来越深,钻穿微孔变得越来越困难。此外,由于不稳定的放电和电弧,从加工间隙中去除碎片和更新电介质是困难的。在本研究中,通过诱导工件的间歇跳跃,提出了用于高纵横比钻孔微孔的跳跃冲洗系统。该系统由水平主轴和纯水电介质辅助。结果,成功地在不锈钢上加工了一个直径为100μm的1.5mm深的孔,而不锈钢是较难钻深微孔的材料之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Microholes Machining by EDM
Machining microholes with high aspect ratios has become important in various industrial fields. Since the development of WEDG (wire electro discharge grinding), micro-EDM has been an excellent process for machining microholes in metals and alloys. However problems remain in machining the high-aspect-ratio holes. As the depth of microholes becomes deeper, drilling through the microholes becomes more difficult. In addition, the removal of debris and renewal of dielectric from the machining gap are difficult because unstable discharge and arcing usually result. In this study, the jump flushing system is proposed for drilling microholes with high aspect ratios, by inducing an intermittent jump of the workpiece. The system is assisted by the horizontal main spindle and pure water dielectric. As a result, a 1.5mm-deep hole with the diameter of 100μm was successfully machined in to stainless steel which is one of the more difficult materials in which to drill deep microholes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consideration of Formation Mechanism of Conductive Layer in Electrical Discharge Machining of Insulating Si 3 N 4 Ceramics Electrochemical Machining of Sintered Carbide (1st Report): - Prevention of Excessive Co Elution -@@@-Coの溶出防止の方法- 形彫り放電加工特性に及ぼす放電加工油物性の影響(第1報) : 導電性材料の放電加工の場合 Study on effect of assist gas in electrolyte jet machining Nanometer-Resolution Cross Sectional Observation of the Changes in Multilayer Thin Films and Substrates due to Laser Ablation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1