时效对Cu-2 wt. % Be合金显微硬度和电导率的影响

L. Zaynullina, E. Sarkeeva, I. Alexandrov, R. Valiev
{"title":"时效对Cu-2 wt. % Be合金显微硬度和电导率的影响","authors":"L. Zaynullina, E. Sarkeeva, I. Alexandrov, R. Valiev","doi":"10.18323/2782-4039-2022-3-1-69-75","DOIUrl":null,"url":null,"abstract":"Goods made of beryllium bronzes got widespread use in the industry due to the complex of properties: high heat conductivity, strength, hardness, wear resistance, and corrosion resistance. They are not magnesium-based and do not spark on impact; therefore, they are essential for the production of non-sparking tools. The alloys of this system are used in the electrical engineering industry; consequently, it is necessary to pay attention to the improvement of the material’s electrical conductivity. The paper studies the microstructure, microhardness, and electrical conductivity of the Cu–2 wt.% Be alloy exposed to high-pressure torsion (HPT). The authors investigated the microstructure and fine structure of the alloy in various states. The study showed that HPT leads to the formation of an ultrafine-grained nanostructured (UFG NS) state with an average size of grains/subgrains of 22±1 mmn. Additional ageing of samples after HPD led to a slight increase in the grains/subgrains size up to 31±1 mmn. In both states, the authors observed nanosized deformation twins. The authors studied the dependences of microhardness and electrical conductivity of the alloy after HPD on the time of further ageing. The study identified that the microhardness increases from 122±3 HV in the initial state up to 525±8 HV after HPD and ageing. The investigation shows that the electrical conductivity substantially better recovers after ageing of the UFG NS state compared to the initial state. The electrical conductivity of the UFG NS state increased from 14.5±0.1 % IACS up to 27.5±0.6 % IACS in conditions similar to the initial state ageing. Therefore, resulting from such processing, the Cu–2 wt.% Be alloy is characterized by its advanced strength properties and electrical conductivity.","PeriodicalId":251458,"journal":{"name":"Frontier materials & technologies","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of aging on microhardness and electrical conductivity of Cu–2 wt. % Be alloy\",\"authors\":\"L. Zaynullina, E. Sarkeeva, I. Alexandrov, R. Valiev\",\"doi\":\"10.18323/2782-4039-2022-3-1-69-75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Goods made of beryllium bronzes got widespread use in the industry due to the complex of properties: high heat conductivity, strength, hardness, wear resistance, and corrosion resistance. They are not magnesium-based and do not spark on impact; therefore, they are essential for the production of non-sparking tools. The alloys of this system are used in the electrical engineering industry; consequently, it is necessary to pay attention to the improvement of the material’s electrical conductivity. The paper studies the microstructure, microhardness, and electrical conductivity of the Cu–2 wt.% Be alloy exposed to high-pressure torsion (HPT). The authors investigated the microstructure and fine structure of the alloy in various states. The study showed that HPT leads to the formation of an ultrafine-grained nanostructured (UFG NS) state with an average size of grains/subgrains of 22±1 mmn. Additional ageing of samples after HPD led to a slight increase in the grains/subgrains size up to 31±1 mmn. In both states, the authors observed nanosized deformation twins. The authors studied the dependences of microhardness and electrical conductivity of the alloy after HPD on the time of further ageing. The study identified that the microhardness increases from 122±3 HV in the initial state up to 525±8 HV after HPD and ageing. The investigation shows that the electrical conductivity substantially better recovers after ageing of the UFG NS state compared to the initial state. The electrical conductivity of the UFG NS state increased from 14.5±0.1 % IACS up to 27.5±0.6 % IACS in conditions similar to the initial state ageing. Therefore, resulting from such processing, the Cu–2 wt.% Be alloy is characterized by its advanced strength properties and electrical conductivity.\",\"PeriodicalId\":251458,\"journal\":{\"name\":\"Frontier materials & technologies\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontier materials & technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18323/2782-4039-2022-3-1-69-75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontier materials & technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18323/2782-4039-2022-3-1-69-75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于铍青铜具有高导热性、强度、硬度、耐磨性和耐腐蚀性等综合性能,在工业上得到了广泛的应用。它们不是镁基的,撞击时不会产生火花;因此,它们对于生产无火花工具是必不可少的。该系统的合金用于电气工程行业;因此,有必要注意提高材料的导电性。本文研究了Cu-2 wt.% Be合金在高压扭转(HPT)下的显微组织、显微硬度和电导率。研究了合金在不同状态下的显微组织和微观组织。研究表明,高温热处理可形成晶粒/亚晶粒平均尺寸为22±1 mmn的超细晶纳米结构(UFG NS)。HPD后,样品的进一步老化导致晶粒/亚晶粒尺寸略有增加,可达31±1 mmn。在这两种状态下,作者都观察到了纳米级变形孪晶。研究了HPD后合金的显微硬度和电导率与进一步时效时间的关系。研究发现,HPD和时效后的显微硬度从初始状态的122±3 HV增加到525±8 HV。研究表明,与初始状态相比,UFG - NS状态老化后的电导率恢复得更好。在与初始状态老化相似的条件下,UFG NS状态的电导率从14.5±0.1% IACS增加到27.5±0.6% IACS。因此,经过这种加工,Cu-2 wt.% Be合金具有先进的强度和导电性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The influence of aging on microhardness and electrical conductivity of Cu–2 wt. % Be alloy
Goods made of beryllium bronzes got widespread use in the industry due to the complex of properties: high heat conductivity, strength, hardness, wear resistance, and corrosion resistance. They are not magnesium-based and do not spark on impact; therefore, they are essential for the production of non-sparking tools. The alloys of this system are used in the electrical engineering industry; consequently, it is necessary to pay attention to the improvement of the material’s electrical conductivity. The paper studies the microstructure, microhardness, and electrical conductivity of the Cu–2 wt.% Be alloy exposed to high-pressure torsion (HPT). The authors investigated the microstructure and fine structure of the alloy in various states. The study showed that HPT leads to the formation of an ultrafine-grained nanostructured (UFG NS) state with an average size of grains/subgrains of 22±1 mmn. Additional ageing of samples after HPD led to a slight increase in the grains/subgrains size up to 31±1 mmn. In both states, the authors observed nanosized deformation twins. The authors studied the dependences of microhardness and electrical conductivity of the alloy after HPD on the time of further ageing. The study identified that the microhardness increases from 122±3 HV in the initial state up to 525±8 HV after HPD and ageing. The investigation shows that the electrical conductivity substantially better recovers after ageing of the UFG NS state compared to the initial state. The electrical conductivity of the UFG NS state increased from 14.5±0.1 % IACS up to 27.5±0.6 % IACS in conditions similar to the initial state ageing. Therefore, resulting from such processing, the Cu–2 wt.% Be alloy is characterized by its advanced strength properties and electrical conductivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The formation of PEO coatings on the superelastic Ti–18Zr–15Nb alloy in calcium-containing electrolytes Finite-element simulation of fatigue behavior of a medical implant produced from titanium in the large-grained and nanostructured states The study of the structure and properties of a wear-resistant gas-thermal coating containing tungsten FORMING AN EDGED CUBIC TEXTURE IN BAND SUBSTRATES MADE OF (Cu+Ni)–Me (Me=Mo, Mn, Nb) ALLOYS FOR HIGH-TEMPERATURE SECOND-GENERATION SUPERCONDUCTORS The study of the structure and properties of a friction composite material based on an iron matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1