{"title":"多目标无功规划:一种Pareto优化方法","authors":"S. Small, B. Jeyasurya","doi":"10.1109/ISAP.2007.4441630","DOIUrl":null,"url":null,"abstract":"Increased load forecasts can severely deteriorate the performance of a power system. Reactive compensation devices are a common method to allow a power system to return to an acceptable performance level for an expected load. Reactive power planning (RPP) is used to determine the optimal placement of reactive devices for a set of objectives. RPP is a large scale multiple objectives highly constrained and partially discrete optimization problem that is very difficult to solve. Evolutionary algorithms have been used to solve RPP problems. However, new multi-objective evolutionary computational techniques have shown the ability to consider an optimization problem's objectives independently for the determination of Pareto Optimal solutions. This paper aims at applying the Non-Dominated Sorting Genetic Algorithm II (NSGAII) to a multi-objective RPP. The results from the case study presented show that there is great potential in the use of evolutionary computation for solving the multi-objective RPP.","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Multi-Objective Reactive Power Planning: A Pareto Optimization Approach\",\"authors\":\"S. Small, B. Jeyasurya\",\"doi\":\"10.1109/ISAP.2007.4441630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased load forecasts can severely deteriorate the performance of a power system. Reactive compensation devices are a common method to allow a power system to return to an acceptable performance level for an expected load. Reactive power planning (RPP) is used to determine the optimal placement of reactive devices for a set of objectives. RPP is a large scale multiple objectives highly constrained and partially discrete optimization problem that is very difficult to solve. Evolutionary algorithms have been used to solve RPP problems. However, new multi-objective evolutionary computational techniques have shown the ability to consider an optimization problem's objectives independently for the determination of Pareto Optimal solutions. This paper aims at applying the Non-Dominated Sorting Genetic Algorithm II (NSGAII) to a multi-objective RPP. The results from the case study presented show that there is great potential in the use of evolutionary computation for solving the multi-objective RPP.\",\"PeriodicalId\":320068,\"journal\":{\"name\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2007.4441630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Objective Reactive Power Planning: A Pareto Optimization Approach
Increased load forecasts can severely deteriorate the performance of a power system. Reactive compensation devices are a common method to allow a power system to return to an acceptable performance level for an expected load. Reactive power planning (RPP) is used to determine the optimal placement of reactive devices for a set of objectives. RPP is a large scale multiple objectives highly constrained and partially discrete optimization problem that is very difficult to solve. Evolutionary algorithms have been used to solve RPP problems. However, new multi-objective evolutionary computational techniques have shown the ability to consider an optimization problem's objectives independently for the determination of Pareto Optimal solutions. This paper aims at applying the Non-Dominated Sorting Genetic Algorithm II (NSGAII) to a multi-objective RPP. The results from the case study presented show that there is great potential in the use of evolutionary computation for solving the multi-objective RPP.