ADS-B混合SUAS和NAS系统容量分析和DAA性能

Konstantin J. Matheou, R. Apaza, A. Downey, R. Kerczewski, John Wang
{"title":"ADS-B混合SUAS和NAS系统容量分析和DAA性能","authors":"Konstantin J. Matheou, R. Apaza, A. Downey, R. Kerczewski, John Wang","doi":"10.1109/ICNSURV.2018.8384838","DOIUrl":null,"url":null,"abstract":"Automatic Dependent Surveillance-Broadcast (ADS-B) technology was introduced more than twenty years ago to improve surveillance within the US National Airspace Space (NAS) as well as in many other countries. Via the NextGen initiative, implementation of ADS-B technology across the US is planned in stages between 2012 and 2025. ADS-B's automatic one second epoch packet transmission exploits on-board GPS-derived navigational information to provide position information, as well as other information including vehicle identification, ground speed, vertical rate and track angle. The purpose of this technology is to improve surveillance data accuracy and provide access to better situational awareness to enable operational benefits such as shorter routes, reduced flight time and fuel burn, and reduced traffic delays, and to allow air traffic controllers to manage aircraft with greater safety margins. Other than the limited amount of information bits per packet that can be sent, ADS-B's other hard-limit limitation is capacity. Small unmanned aircraft systems (sUAS) can utilize limited ADS-B transmission power, in general, thus allowing this technology to be considered for use within a combined NAS and sUAS environment, but the potential number and density of sUAS predicted for future deployment calls into question the ability of ADS-B systems to meet the resulting capacity requirement. Hence, studies to understand potential limitations of ADS-B to fulfill capacity requirements in various sUAS scenarios are of great interest. In this paper we, validate/improve on, previous work performed by the MITRE Corporation concerning sUAS power and capacity in a sUAS and General Aviation (GA) mixed environment. In addition, we implement its inherent media access control layer capacity limitations which was not shown in the MITRE paper. Finally, a simple detect and avoid (DAA) algorithm is implemented to display that ADS-B technology is a viable technology for a mixed NAS/sUAS environment even in proposed larger mixed density environments.","PeriodicalId":112779,"journal":{"name":"2018 Integrated Communications, Navigation, Surveillance Conference (ICNS)","volume":"115 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"ADS-B mixed SUAS and NAS system capacity analysis and DAA performance\",\"authors\":\"Konstantin J. Matheou, R. Apaza, A. Downey, R. Kerczewski, John Wang\",\"doi\":\"10.1109/ICNSURV.2018.8384838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic Dependent Surveillance-Broadcast (ADS-B) technology was introduced more than twenty years ago to improve surveillance within the US National Airspace Space (NAS) as well as in many other countries. Via the NextGen initiative, implementation of ADS-B technology across the US is planned in stages between 2012 and 2025. ADS-B's automatic one second epoch packet transmission exploits on-board GPS-derived navigational information to provide position information, as well as other information including vehicle identification, ground speed, vertical rate and track angle. The purpose of this technology is to improve surveillance data accuracy and provide access to better situational awareness to enable operational benefits such as shorter routes, reduced flight time and fuel burn, and reduced traffic delays, and to allow air traffic controllers to manage aircraft with greater safety margins. Other than the limited amount of information bits per packet that can be sent, ADS-B's other hard-limit limitation is capacity. Small unmanned aircraft systems (sUAS) can utilize limited ADS-B transmission power, in general, thus allowing this technology to be considered for use within a combined NAS and sUAS environment, but the potential number and density of sUAS predicted for future deployment calls into question the ability of ADS-B systems to meet the resulting capacity requirement. Hence, studies to understand potential limitations of ADS-B to fulfill capacity requirements in various sUAS scenarios are of great interest. In this paper we, validate/improve on, previous work performed by the MITRE Corporation concerning sUAS power and capacity in a sUAS and General Aviation (GA) mixed environment. In addition, we implement its inherent media access control layer capacity limitations which was not shown in the MITRE paper. Finally, a simple detect and avoid (DAA) algorithm is implemented to display that ADS-B technology is a viable technology for a mixed NAS/sUAS environment even in proposed larger mixed density environments.\",\"PeriodicalId\":112779,\"journal\":{\"name\":\"2018 Integrated Communications, Navigation, Surveillance Conference (ICNS)\",\"volume\":\"115 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Integrated Communications, Navigation, Surveillance Conference (ICNS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSURV.2018.8384838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Integrated Communications, Navigation, Surveillance Conference (ICNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSURV.2018.8384838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

自动相关监视广播(ADS-B)技术是二十多年前引入的,用于改善美国国家空域(NAS)以及许多其他国家的监视。通过NextGen计划,ADS-B技术计划在2012年至2025年间在美国各地分阶段实施。ADS-B的自动一秒epoch数据包传输利用车载gps衍生的导航信息提供位置信息,以及其他信息,包括车辆识别、地面速度、垂直速率和航迹角度。该技术的目的是提高监视数据的准确性,并提供更好的态势感知,以实现更短的航线、更短的飞行时间和燃油消耗、更少的交通延误等运营效益,并允许空中交通管制员以更大的安全边际管理飞机。除了可以发送的每个数据包的信息位数有限之外,ADS-B的另一个硬限制限制是容量。一般来说,小型无人机系统(sUAS)可以利用有限的ADS-B传输功率,因此可以考虑在NAS和sUAS的组合环境中使用该技术,但是预测未来部署的sUAS的潜在数量和密度使ADS-B系统满足由此产生的容量需求的能力受到质疑。因此,了解ADS-B在各种sUAS场景中满足容量需求的潜在局限性的研究非常有意义。在本文中,我们验证/改进了MITRE公司在sUAS和通用航空(GA)混合环境中关于sUAS功率和容量的先前工作。此外,我们实现了其固有的媒体访问控制层容量限制,这在MITRE论文中没有显示。最后,实现了一个简单的检测和避免(DAA)算法,以显示ADS-B技术即使在提出的更大混合密度环境中也是一种可行的混合NAS/sUAS环境技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADS-B mixed SUAS and NAS system capacity analysis and DAA performance
Automatic Dependent Surveillance-Broadcast (ADS-B) technology was introduced more than twenty years ago to improve surveillance within the US National Airspace Space (NAS) as well as in many other countries. Via the NextGen initiative, implementation of ADS-B technology across the US is planned in stages between 2012 and 2025. ADS-B's automatic one second epoch packet transmission exploits on-board GPS-derived navigational information to provide position information, as well as other information including vehicle identification, ground speed, vertical rate and track angle. The purpose of this technology is to improve surveillance data accuracy and provide access to better situational awareness to enable operational benefits such as shorter routes, reduced flight time and fuel burn, and reduced traffic delays, and to allow air traffic controllers to manage aircraft with greater safety margins. Other than the limited amount of information bits per packet that can be sent, ADS-B's other hard-limit limitation is capacity. Small unmanned aircraft systems (sUAS) can utilize limited ADS-B transmission power, in general, thus allowing this technology to be considered for use within a combined NAS and sUAS environment, but the potential number and density of sUAS predicted for future deployment calls into question the ability of ADS-B systems to meet the resulting capacity requirement. Hence, studies to understand potential limitations of ADS-B to fulfill capacity requirements in various sUAS scenarios are of great interest. In this paper we, validate/improve on, previous work performed by the MITRE Corporation concerning sUAS power and capacity in a sUAS and General Aviation (GA) mixed environment. In addition, we implement its inherent media access control layer capacity limitations which was not shown in the MITRE paper. Finally, a simple detect and avoid (DAA) algorithm is implemented to display that ADS-B technology is a viable technology for a mixed NAS/sUAS environment even in proposed larger mixed density environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the security of aeronautical datalink communications: Problems and solutions Total system error performance of drones for an unmanned PBN concept Rapid assessment of air traffic impact of blocking airspaces: Integrated communications navigation and surveillance (ICNS) conference Narrowband propagation statistics of aeronautical mobile-ground links in the L- and C-bands Bird strike risk mitigation using avian radar and ADS-B
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1