Nurul Izzati Mohammad Noh, K. A. Yusof, M. Zolkapli, A. Abdullah, W. Abdullah, S. H. Herman
{"title":"沟道宽度与长度比对MOSFET-ISFET结构等温点的影响","authors":"Nurul Izzati Mohammad Noh, K. A. Yusof, M. Zolkapli, A. Abdullah, W. Abdullah, S. H. Herman","doi":"10.1109/RSM.2013.6706490","DOIUrl":null,"url":null,"abstract":"The effect of channel width-to-length (W/L) ratio on MOSFET-ISFET structures was investigated from simulation and experimental approach. A metal-oxide-semiconductor field-effect-transistor (MOSFET) has been adopted to investigate the isothermal point of an ion-sensitive FET (ISFET), which is needed to suit the readout interfacing circuit of an ISFET sensor. The MOSFET structure with different W/L ratio has been characterized in order to see the effect of W/L ratio to the isothermal point. The Keithley 236 Parameter Analyzer and Semi-auto prober micromanipulator system were used to measure the drain-source current (IDS) versus gate to source voltage (VGS) curves at various temperatures from 30 °C to 60 °C. The simulation result showed that the reduction of W/L ratio can decrease the isothermal point and this was proven by the actual measurement.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"9 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of channel width-to-length ratio on isothermal point of MOSFET-ISFET structure\",\"authors\":\"Nurul Izzati Mohammad Noh, K. A. Yusof, M. Zolkapli, A. Abdullah, W. Abdullah, S. H. Herman\",\"doi\":\"10.1109/RSM.2013.6706490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of channel width-to-length (W/L) ratio on MOSFET-ISFET structures was investigated from simulation and experimental approach. A metal-oxide-semiconductor field-effect-transistor (MOSFET) has been adopted to investigate the isothermal point of an ion-sensitive FET (ISFET), which is needed to suit the readout interfacing circuit of an ISFET sensor. The MOSFET structure with different W/L ratio has been characterized in order to see the effect of W/L ratio to the isothermal point. The Keithley 236 Parameter Analyzer and Semi-auto prober micromanipulator system were used to measure the drain-source current (IDS) versus gate to source voltage (VGS) curves at various temperatures from 30 °C to 60 °C. The simulation result showed that the reduction of W/L ratio can decrease the isothermal point and this was proven by the actual measurement.\",\"PeriodicalId\":346255,\"journal\":{\"name\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"volume\":\"9 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2013.6706490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of channel width-to-length ratio on isothermal point of MOSFET-ISFET structure
The effect of channel width-to-length (W/L) ratio on MOSFET-ISFET structures was investigated from simulation and experimental approach. A metal-oxide-semiconductor field-effect-transistor (MOSFET) has been adopted to investigate the isothermal point of an ion-sensitive FET (ISFET), which is needed to suit the readout interfacing circuit of an ISFET sensor. The MOSFET structure with different W/L ratio has been characterized in order to see the effect of W/L ratio to the isothermal point. The Keithley 236 Parameter Analyzer and Semi-auto prober micromanipulator system were used to measure the drain-source current (IDS) versus gate to source voltage (VGS) curves at various temperatures from 30 °C to 60 °C. The simulation result showed that the reduction of W/L ratio can decrease the isothermal point and this was proven by the actual measurement.