具有电可编程突触的固态电子线性自适应神经元

C.-Y.M. Chen, M. White, M. French
{"title":"具有电可编程突触的固态电子线性自适应神经元","authors":"C.-Y.M. Chen, M. White, M. French","doi":"10.1109/ELECTR.1991.718281","DOIUrl":null,"url":null,"abstract":"This paper addresses the implementation of a semiconductor device used to siniulate the synaptic interconnection in hardware realization of neural network systems. We have incorporated these modifiable synaptic weights into a solid-state electronic linear adaptive neuron with a Widrow-Hoff's delta learning rule as the updating algorithm to investigate the electrical performance of these programmable synapses. The experimental and simulation results are also presented in the paper.","PeriodicalId":339281,"journal":{"name":"Electro International, 1991","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Solid-State Electronic Linear Adaptive Neuron With Electrically Reprogrammabe Synapses\",\"authors\":\"C.-Y.M. Chen, M. White, M. French\",\"doi\":\"10.1109/ELECTR.1991.718281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the implementation of a semiconductor device used to siniulate the synaptic interconnection in hardware realization of neural network systems. We have incorporated these modifiable synaptic weights into a solid-state electronic linear adaptive neuron with a Widrow-Hoff's delta learning rule as the updating algorithm to investigate the electrical performance of these programmable synapses. The experimental and simulation results are also presented in the paper.\",\"PeriodicalId\":339281,\"journal\":{\"name\":\"Electro International, 1991\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electro International, 1991\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELECTR.1991.718281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electro International, 1991","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECTR.1991.718281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了在神经网络系统硬件实现中用于模拟突触互连的半导体器件的实现。我们将这些可修改的突触权重整合到固态电子线性自适应神经元中,并使用Widrow-Hoff's delta学习规则作为更新算法来研究这些可编程突触的电学性能。最后给出了实验和仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Solid-State Electronic Linear Adaptive Neuron With Electrically Reprogrammabe Synapses
This paper addresses the implementation of a semiconductor device used to siniulate the synaptic interconnection in hardware realization of neural network systems. We have incorporated these modifiable synaptic weights into a solid-state electronic linear adaptive neuron with a Widrow-Hoff's delta learning rule as the updating algorithm to investigate the electrical performance of these programmable synapses. The experimental and simulation results are also presented in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Connector Reliability Testing: Noise Spectral Analysis Statistical Control Of Electronic Measurements State-of-the-Art Of Artificial Neural Networks And Applications To Mars Robots Differences Between Commercial and Military Testing Monorail Maglev Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1