生物细胞膜感应电压的评价

R. Campbell, B. Crichton, R. Fouracre, I. Timoshkin, M. Given
{"title":"生物细胞膜感应电压的评价","authors":"R. Campbell, B. Crichton, R. Fouracre, I. Timoshkin, M. Given","doi":"10.1109/MODSYM.2006.365294","DOIUrl":null,"url":null,"abstract":"The application of pulsed electric fields (PEF) to biological cells induces trans-membrane potentials that can give rise to significant biological effects, predominantly electroporation. Recently, the effects of sub-microsecond intense electrical pulses (sm-PEF) on cellular organelles have been reported. In such applications, instantaneous power is high (~MW) but, due to the short pulse duration, energy delivered to cells and tissues is low (~nJ per cell). Electroporation is used mainly for transfections of exogenous materials, but many other interventions are possible, including microbial deactivation, whereas sm-PEF has shown particular promise in medical fields, including oncology. In this paper, the response of cells to PEF and sm-PEF is examined using an equivalent circuit model (ECM) where a network of electrical components is used to represent the cell and its environment. The model is validated through comparison with independent analytical and numerical studies. It is shown that the ECM, which is not computationally demanding, may be usefully adopted to examine how a cell and organelle respond to a wide range of cell parameters and pulse types. It is considered that such mathematical models, which can help to establish a quantitative link between the application of a time-varying electromagnetic pulse and the subsequent cell response, may allow the possible correlation between such responses and microbiological measurements to be investigated. It is anticipated that the development of these modeling approaches will aid in the analysis of those experimental measurements that are presently considered to be unattainable through real stochastic studies","PeriodicalId":410776,"journal":{"name":"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evaluation of Induced Voltage on Biological Cell Membranes\",\"authors\":\"R. Campbell, B. Crichton, R. Fouracre, I. Timoshkin, M. Given\",\"doi\":\"10.1109/MODSYM.2006.365294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of pulsed electric fields (PEF) to biological cells induces trans-membrane potentials that can give rise to significant biological effects, predominantly electroporation. Recently, the effects of sub-microsecond intense electrical pulses (sm-PEF) on cellular organelles have been reported. In such applications, instantaneous power is high (~MW) but, due to the short pulse duration, energy delivered to cells and tissues is low (~nJ per cell). Electroporation is used mainly for transfections of exogenous materials, but many other interventions are possible, including microbial deactivation, whereas sm-PEF has shown particular promise in medical fields, including oncology. In this paper, the response of cells to PEF and sm-PEF is examined using an equivalent circuit model (ECM) where a network of electrical components is used to represent the cell and its environment. The model is validated through comparison with independent analytical and numerical studies. It is shown that the ECM, which is not computationally demanding, may be usefully adopted to examine how a cell and organelle respond to a wide range of cell parameters and pulse types. It is considered that such mathematical models, which can help to establish a quantitative link between the application of a time-varying electromagnetic pulse and the subsequent cell response, may allow the possible correlation between such responses and microbiological measurements to be investigated. It is anticipated that the development of these modeling approaches will aid in the analysis of those experimental measurements that are presently considered to be unattainable through real stochastic studies\",\"PeriodicalId\":410776,\"journal\":{\"name\":\"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MODSYM.2006.365294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MODSYM.2006.365294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

脉冲电场(PEF)应用于生物细胞诱导跨膜电位,可以引起显著的生物效应,主要是电穿孔。近年来,亚微秒强电脉冲(sm-PEF)对细胞器的影响已被报道。在这种应用中,瞬时功率很高(~MW),但由于脉冲持续时间短,传递到细胞和组织的能量很低(每个细胞~nJ)。电穿孔主要用于外源性物质的转染,但也可能有许多其他干预措施,包括微生物失活,而sm-PEF在包括肿瘤学在内的医学领域显示出特别的前景。在本文中,使用等效电路模型(ECM)检查细胞对PEF和sm-PEF的响应,其中使用电子元件网络来表示细胞及其环境。通过与独立分析和数值研究的比较,验证了模型的有效性。结果表明,计算要求不高的ECM可以有效地用于检查细胞和细胞器如何响应广泛的细胞参数和脉冲类型。人们认为,这种数学模型可以帮助在时变电磁脉冲的应用与随后的细胞反应之间建立定量联系,可能允许研究这种反应与微生物测量之间的可能相关性。预计这些建模方法的发展将有助于分析目前被认为无法通过真正的随机研究获得的实验测量结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Induced Voltage on Biological Cell Membranes
The application of pulsed electric fields (PEF) to biological cells induces trans-membrane potentials that can give rise to significant biological effects, predominantly electroporation. Recently, the effects of sub-microsecond intense electrical pulses (sm-PEF) on cellular organelles have been reported. In such applications, instantaneous power is high (~MW) but, due to the short pulse duration, energy delivered to cells and tissues is low (~nJ per cell). Electroporation is used mainly for transfections of exogenous materials, but many other interventions are possible, including microbial deactivation, whereas sm-PEF has shown particular promise in medical fields, including oncology. In this paper, the response of cells to PEF and sm-PEF is examined using an equivalent circuit model (ECM) where a network of electrical components is used to represent the cell and its environment. The model is validated through comparison with independent analytical and numerical studies. It is shown that the ECM, which is not computationally demanding, may be usefully adopted to examine how a cell and organelle respond to a wide range of cell parameters and pulse types. It is considered that such mathematical models, which can help to establish a quantitative link between the application of a time-varying electromagnetic pulse and the subsequent cell response, may allow the possible correlation between such responses and microbiological measurements to be investigated. It is anticipated that the development of these modeling approaches will aid in the analysis of those experimental measurements that are presently considered to be unattainable through real stochastic studies
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast discharge, high energy density capacitor performance Series Stacked Switches for Radar Transmitters Biophotonic Studies of Mammalian Cells with Nanosecond Pulsed Power Using Quantum Dots Green-Laser-Triggered Water Switching at 1.6 MegaVolts A Comparison of the AC Breakdown Strength of New and Used Poly-α Olefin Oil to Transformer Oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1