B. Sudharsan, Dhruv Sheth, Shailesh Arya, Federica Rollo, Piyush Yadav, Pankesh Patel, John G. Breslin, M. Ali
{"title":"ElastiCL","authors":"B. Sudharsan, Dhruv Sheth, Shailesh Arya, Federica Rollo, Piyush Yadav, Pankesh Patel, John G. Breslin, M. Ali","doi":"10.1145/3485730.3492885","DOIUrl":null,"url":null,"abstract":"Transmitting updates of high-dimensional models between client IoT devices and the central aggregating server has always been a bottleneck in collaborative learning - especially in uncertain real-world IoT networks where congestion, latency, bandwidth issues are common. In this scenario, gradient quantization is an effective way to reduce bits count when transmitting each model update, but with a trade-off of having an elevated error floor due to higher variance of the stochastic gradients. In this paper, we propose ElastiCL, an elastic quantization strategy that achieves transmission efficiency plus a low error floor by dynamically altering the number of quantization levels during training on distributed IoT devices. Experiments on training ResNet-18, Vanilla CNN shows that ElastiCL can converge in much fewer transmitted bits than fixed quantization level, with little or no compromise on training and test accuracy.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ElastiCL\",\"authors\":\"B. Sudharsan, Dhruv Sheth, Shailesh Arya, Federica Rollo, Piyush Yadav, Pankesh Patel, John G. Breslin, M. Ali\",\"doi\":\"10.1145/3485730.3492885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transmitting updates of high-dimensional models between client IoT devices and the central aggregating server has always been a bottleneck in collaborative learning - especially in uncertain real-world IoT networks where congestion, latency, bandwidth issues are common. In this scenario, gradient quantization is an effective way to reduce bits count when transmitting each model update, but with a trade-off of having an elevated error floor due to higher variance of the stochastic gradients. In this paper, we propose ElastiCL, an elastic quantization strategy that achieves transmission efficiency plus a low error floor by dynamically altering the number of quantization levels during training on distributed IoT devices. Experiments on training ResNet-18, Vanilla CNN shows that ElastiCL can converge in much fewer transmitted bits than fixed quantization level, with little or no compromise on training and test accuracy.\",\"PeriodicalId\":356322,\"journal\":{\"name\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485730.3492885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3492885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transmitting updates of high-dimensional models between client IoT devices and the central aggregating server has always been a bottleneck in collaborative learning - especially in uncertain real-world IoT networks where congestion, latency, bandwidth issues are common. In this scenario, gradient quantization is an effective way to reduce bits count when transmitting each model update, but with a trade-off of having an elevated error floor due to higher variance of the stochastic gradients. In this paper, we propose ElastiCL, an elastic quantization strategy that achieves transmission efficiency plus a low error floor by dynamically altering the number of quantization levels during training on distributed IoT devices. Experiments on training ResNet-18, Vanilla CNN shows that ElastiCL can converge in much fewer transmitted bits than fixed quantization level, with little or no compromise on training and test accuracy.