基于点阵的语音翻译Viterbi解码技术

G. Saon, M. Picheny
{"title":"基于点阵的语音翻译Viterbi解码技术","authors":"G. Saon, M. Picheny","doi":"10.1109/ASRU.2007.4430143","DOIUrl":null,"url":null,"abstract":"We describe a cardinal-synchronous Viterbi decoder for statistical phrase-based machine translation which can operate on general ASR lattices (as opposed to confusion networks). The decoder implements constrained source reordering on the input lattice and makes use of an outbound distortion model to score the possible reorderings. The phrase table, representing the decoding search space, is encoded as a weighted finite state acceptor which is determined and minimized. At a high level, the search proceeds by performing simultaneous transitions in two pairs of automata: (input lattice, phrase table FSM) and (phrase table FSM, target language model). An alternative decoding strategy that we explore is to break the search into two independent subproblems: first, we perform monotone lattice decoding and find the best foreign path through the ASR lattice and then, we decode this path with reordering using standard sentence-based SMT. We report experimental results on several testsets of a large scale Arabic-to-English speech translation task in the context of the global autonomous language exploitation (or GALE) DARPA project. The results indicate that, for monotone search, lattice-based decoding outperforms 1-best decoding whereas for search with reordering, only the second decoding strategy was found to be superior to 1-best decoding. In both cases, the improvements hold only for shallow lattices.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Lattice-based Viterbi decoding techniques for speech translation\",\"authors\":\"G. Saon, M. Picheny\",\"doi\":\"10.1109/ASRU.2007.4430143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a cardinal-synchronous Viterbi decoder for statistical phrase-based machine translation which can operate on general ASR lattices (as opposed to confusion networks). The decoder implements constrained source reordering on the input lattice and makes use of an outbound distortion model to score the possible reorderings. The phrase table, representing the decoding search space, is encoded as a weighted finite state acceptor which is determined and minimized. At a high level, the search proceeds by performing simultaneous transitions in two pairs of automata: (input lattice, phrase table FSM) and (phrase table FSM, target language model). An alternative decoding strategy that we explore is to break the search into two independent subproblems: first, we perform monotone lattice decoding and find the best foreign path through the ASR lattice and then, we decode this path with reordering using standard sentence-based SMT. We report experimental results on several testsets of a large scale Arabic-to-English speech translation task in the context of the global autonomous language exploitation (or GALE) DARPA project. The results indicate that, for monotone search, lattice-based decoding outperforms 1-best decoding whereas for search with reordering, only the second decoding strategy was found to be superior to 1-best decoding. In both cases, the improvements hold only for shallow lattices.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们描述了一个基于统计短语的机器翻译的基数同步维特比解码器,它可以在一般的ASR格上运行(与混淆网络相反)。解码器在输入格上实现约束源重排序,并利用出站失真模型对可能的重排序进行评分。表示解码搜索空间的短语表被编码为一个加权的有限状态接受体,该有限状态接受体被确定并最小化。在高层次上,搜索通过在两对自动机中同时执行转换来进行:(输入格,短语表FSM)和(短语表FSM,目标语言模型)。我们探索的另一种解码策略是将搜索分解为两个独立的子问题:首先,我们执行单调格解码并通过ASR格找到最佳外部路径,然后,我们使用基于标准句子的SMT对该路径进行重新排序解码。我们报告了在全球自主语言开发(GALE) DARPA项目背景下的大规模阿拉伯语到英语语音翻译任务的几个测试集的实验结果。结果表明,对于单调搜索,基于格的解码优于1-best解码,而对于重排搜索,只有第二种解码策略优于1-best解码。在这两种情况下,改进只适用于浅格子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lattice-based Viterbi decoding techniques for speech translation
We describe a cardinal-synchronous Viterbi decoder for statistical phrase-based machine translation which can operate on general ASR lattices (as opposed to confusion networks). The decoder implements constrained source reordering on the input lattice and makes use of an outbound distortion model to score the possible reorderings. The phrase table, representing the decoding search space, is encoded as a weighted finite state acceptor which is determined and minimized. At a high level, the search proceeds by performing simultaneous transitions in two pairs of automata: (input lattice, phrase table FSM) and (phrase table FSM, target language model). An alternative decoding strategy that we explore is to break the search into two independent subproblems: first, we perform monotone lattice decoding and find the best foreign path through the ASR lattice and then, we decode this path with reordering using standard sentence-based SMT. We report experimental results on several testsets of a large scale Arabic-to-English speech translation task in the context of the global autonomous language exploitation (or GALE) DARPA project. The results indicate that, for monotone search, lattice-based decoding outperforms 1-best decoding whereas for search with reordering, only the second decoding strategy was found to be superior to 1-best decoding. In both cases, the improvements hold only for shallow lattices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1