基于服务的CRRM算法的用户级马尔可夫模型

Leijia Wu, Abdallah E. AL Sabbagh, K. Sandrasegaran, M. Elkashlan
{"title":"基于服务的CRRM算法的用户级马尔可夫模型","authors":"Leijia Wu, Abdallah E. AL Sabbagh, K. Sandrasegaran, M. Elkashlan","doi":"10.1109/MCIT.2010.5444856","DOIUrl":null,"url":null,"abstract":"In order to support the conceptual development of Radio Access Technology (RAT) selection algorithms, the theory of Markov model has been used. Performance metrics can be derived from the steady state probabilities of a Markov model. This paper extends a User Level Markov model for a three colocated RATs system from existing two co-located RATs Markov models. The service based RAT selection algorithm has been studied using the proposed Markov model. Numerical results obtained from the proposed Markov model are presented.","PeriodicalId":285648,"journal":{"name":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A User Level Markov model for service based CRRM algorithm\",\"authors\":\"Leijia Wu, Abdallah E. AL Sabbagh, K. Sandrasegaran, M. Elkashlan\",\"doi\":\"10.1109/MCIT.2010.5444856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to support the conceptual development of Radio Access Technology (RAT) selection algorithms, the theory of Markov model has been used. Performance metrics can be derived from the steady state probabilities of a Markov model. This paper extends a User Level Markov model for a three colocated RATs system from existing two co-located RATs Markov models. The service based RAT selection algorithm has been studied using the proposed Markov model. Numerical results obtained from the proposed Markov model are presented.\",\"PeriodicalId\":285648,\"journal\":{\"name\":\"2010 International Conference on Multimedia Computing and Information Technology (MCIT)\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Multimedia Computing and Information Technology (MCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCIT.2010.5444856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCIT.2010.5444856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了支持无线接入技术(RAT)选择算法的概念发展,采用了马尔可夫模型理论。性能指标可以从马尔可夫模型的稳态概率中导出。本文在已有的两个共址rat马尔可夫模型的基础上,对三个共址rat系统的用户级马尔可夫模型进行了扩展。利用提出的马尔可夫模型研究了基于服务的RAT选择算法。给出了基于马尔可夫模型的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A User Level Markov model for service based CRRM algorithm
In order to support the conceptual development of Radio Access Technology (RAT) selection algorithms, the theory of Markov model has been used. Performance metrics can be derived from the steady state probabilities of a Markov model. This paper extends a User Level Markov model for a three colocated RATs system from existing two co-located RATs Markov models. The service based RAT selection algorithm has been studied using the proposed Markov model. Numerical results obtained from the proposed Markov model are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimodal biometric recognition inspired by visual cortex and Support vector machine classifier Partial image retrieval using SIFT based on illumination invariant features Extracting membership functions by ACS algorithm without specifying actual minimum support Gabor wavelet for road sign detection and recognition using a hybrid classifier Prediction model of reservoir fluids properties using Sensitivity Based Linear Learning method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1