生成用于未知应用推断的统计应用签名

Jianlin Luo, Shunzheng Yu
{"title":"生成用于未知应用推断的统计应用签名","authors":"Jianlin Luo, Shunzheng Yu","doi":"10.1109/GCIS.2013.45","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel approach of protocol reverse engineering to extract protocol keywords of unknown application from raw network traffic data without a prior knowledge about the application based on compression theory, entropy and variance analysis. We also present an efficient method to generate statistic signature of unknown application leveraging machine learning and probabilistic models. The experiment results show that our approach extract protocol keywords of application in high accuracy, the false positive and false negative of application identification using our method are very low. Our technique can also discover new application in unknown traffic.","PeriodicalId":366262,"journal":{"name":"2013 Fourth Global Congress on Intelligent Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Statistic Application Signatures for Inference of Unknown Applications\",\"authors\":\"Jianlin Luo, Shunzheng Yu\",\"doi\":\"10.1109/GCIS.2013.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel approach of protocol reverse engineering to extract protocol keywords of unknown application from raw network traffic data without a prior knowledge about the application based on compression theory, entropy and variance analysis. We also present an efficient method to generate statistic signature of unknown application leveraging machine learning and probabilistic models. The experiment results show that our approach extract protocol keywords of application in high accuracy, the false positive and false negative of application identification using our method are very low. Our technique can also discover new application in unknown traffic.\",\"PeriodicalId\":366262,\"journal\":{\"name\":\"2013 Fourth Global Congress on Intelligent Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth Global Congress on Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCIS.2013.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2013.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于压缩理论、熵和方差分析的协议逆向工程方法,在不了解未知应用的前提下,从原始网络流量数据中提取未知应用的协议关键字。我们还提出了一种利用机器学习和概率模型生成未知应用统计签名的有效方法。实验结果表明,该方法提取应用协议关键字的准确率较高,应用识别的误报率和误报率都很低。我们的技术还可以在未知流量中发现新的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating Statistic Application Signatures for Inference of Unknown Applications
In this paper, we propose a novel approach of protocol reverse engineering to extract protocol keywords of unknown application from raw network traffic data without a prior knowledge about the application based on compression theory, entropy and variance analysis. We also present an efficient method to generate statistic signature of unknown application leveraging machine learning and probabilistic models. The experiment results show that our approach extract protocol keywords of application in high accuracy, the false positive and false negative of application identification using our method are very low. Our technique can also discover new application in unknown traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Bayesian Networks with Human Personality and Situation Information to Detect Emotion States from EEG Parameter Analysis of DDE-Based PID Controller Tuning Method Optimized Workforce Scheduling in Bus Transit Companies Reactions of Brain in English Reading Tests A Feature Representation Method of Social Graph for Malware Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1