一种基于音乐情绪变化的相似音乐检索方法

Sanghoon Jun, Byeong-jun Han, Eenjun Hwang
{"title":"一种基于音乐情绪变化的相似音乐检索方法","authors":"Sanghoon Jun, Byeong-jun Han, Eenjun Hwang","doi":"10.1109/ACIIDS.2009.65","DOIUrl":null,"url":null,"abstract":"Music evokes various human emotions or creates music moods through low level musical features. In fact, typical music consists of one or more moods and this can be used as an important factor for determining the similarity between music. In this paper, we propose a new music retrieval scheme based on the mood change pattern. For this, we first divide music clips into segments based on low level musical features. Then, we apply K-means clustering algorithm for grouping them into clusters with similar features. By assigning a unique mood symbol for each group, each music clip can be represented into a sequence of mood symbols. Then, we estimate the similarity of music based on the similarity of their musical mood sequence using the Longest Common Subsequence (LCS) algorithm. To evaluate the performance of our scheme, we carried out various experiments and measured the user evaluation. We report some of the results.","PeriodicalId":275776,"journal":{"name":"2009 First Asian Conference on Intelligent Information and Database Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Similar Music Retrieval Scheme Based on Musical Mood Variation\",\"authors\":\"Sanghoon Jun, Byeong-jun Han, Eenjun Hwang\",\"doi\":\"10.1109/ACIIDS.2009.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Music evokes various human emotions or creates music moods through low level musical features. In fact, typical music consists of one or more moods and this can be used as an important factor for determining the similarity between music. In this paper, we propose a new music retrieval scheme based on the mood change pattern. For this, we first divide music clips into segments based on low level musical features. Then, we apply K-means clustering algorithm for grouping them into clusters with similar features. By assigning a unique mood symbol for each group, each music clip can be represented into a sequence of mood symbols. Then, we estimate the similarity of music based on the similarity of their musical mood sequence using the Longest Common Subsequence (LCS) algorithm. To evaluate the performance of our scheme, we carried out various experiments and measured the user evaluation. We report some of the results.\",\"PeriodicalId\":275776,\"journal\":{\"name\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIIDS.2009.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIDS.2009.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

音乐通过低层次的音乐特征唤起人类的各种情感或创造音乐情绪。事实上,典型的音乐由一种或多种情绪组成,这可以作为确定音乐之间相似性的重要因素。本文提出了一种基于情绪变化模式的音乐检索方法。为此,我们首先根据低级音乐特征将音乐片段划分为片段。然后,我们使用K-means聚类算法将它们分成具有相似特征的聚类。通过为每个组分配一个独特的情绪符号,每个音乐片段都可以表示为一系列情绪符号。然后,我们利用最长公共子序列(LCS)算法基于音乐情绪序列的相似性来估计音乐的相似性。为了评估我们的方案的性能,我们进行了各种实验并测量了用户的评价。我们报道一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Similar Music Retrieval Scheme Based on Musical Mood Variation
Music evokes various human emotions or creates music moods through low level musical features. In fact, typical music consists of one or more moods and this can be used as an important factor for determining the similarity between music. In this paper, we propose a new music retrieval scheme based on the mood change pattern. For this, we first divide music clips into segments based on low level musical features. Then, we apply K-means clustering algorithm for grouping them into clusters with similar features. By assigning a unique mood symbol for each group, each music clip can be represented into a sequence of mood symbols. Then, we estimate the similarity of music based on the similarity of their musical mood sequence using the Longest Common Subsequence (LCS) algorithm. To evaluate the performance of our scheme, we carried out various experiments and measured the user evaluation. We report some of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Data-Searching Algorithms for a Real-Time Information-Delivery System Fuzzy Classification of Incomplete Data with Adaptive Volume Exploring the Use of Social Communications Technologies in Tasks and Its Performance in Organizations Implicit Camera Calibration Using MultiLayer Perceptron Type Neural Network Improved Letter Weighting Feature Selection on Arabic Script Language Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1