{"title":"一种用于移动无线电系统的自适应功率控制和编码方案","authors":"P. Agrawal, B. Narendran, J. Sienicki, S. Yajnik","doi":"10.1109/ICPWC.1996.494285","DOIUrl":null,"url":null,"abstract":"We propose a dynamic combined power control and forward error correction control (FEC) algorithm for mobile radio systems that can minimize the power consumed by wireless transmitters while increasing the number of simultaneous connections. This algorithm is distributed, where individual transmitter-receiver pairs determine the minimal power and FEC to satisfy specified quality-of-service (QOS) constraints. We present simulation results showing that this algorithm outperforms previous algorithms that use only power control.","PeriodicalId":117877,"journal":{"name":"1996 IEEE International Conference on Personal Wireless Communications Proceedings and Exhibition. Future Access","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"An adaptive power control and coding scheme for mobile radio systems\",\"authors\":\"P. Agrawal, B. Narendran, J. Sienicki, S. Yajnik\",\"doi\":\"10.1109/ICPWC.1996.494285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a dynamic combined power control and forward error correction control (FEC) algorithm for mobile radio systems that can minimize the power consumed by wireless transmitters while increasing the number of simultaneous connections. This algorithm is distributed, where individual transmitter-receiver pairs determine the minimal power and FEC to satisfy specified quality-of-service (QOS) constraints. We present simulation results showing that this algorithm outperforms previous algorithms that use only power control.\",\"PeriodicalId\":117877,\"journal\":{\"name\":\"1996 IEEE International Conference on Personal Wireless Communications Proceedings and Exhibition. Future Access\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 IEEE International Conference on Personal Wireless Communications Proceedings and Exhibition. Future Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPWC.1996.494285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE International Conference on Personal Wireless Communications Proceedings and Exhibition. Future Access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPWC.1996.494285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An adaptive power control and coding scheme for mobile radio systems
We propose a dynamic combined power control and forward error correction control (FEC) algorithm for mobile radio systems that can minimize the power consumed by wireless transmitters while increasing the number of simultaneous connections. This algorithm is distributed, where individual transmitter-receiver pairs determine the minimal power and FEC to satisfy specified quality-of-service (QOS) constraints. We present simulation results showing that this algorithm outperforms previous algorithms that use only power control.