{"title":"陆地车辆图像系统的特征向量","authors":"J. Hancock, C. Thorpe","doi":"10.1109/IROS.1995.525772","DOIUrl":null,"url":null,"abstract":"ELVIS (Eigenvectors for Land Vehicle Image System) is a road-following system designed to drive the CMU Navlabs. It is based on ALVINN, the neural network road-following system built by Dean Pomerleau at CMU. ELVIS is an attempt to more fully understand ALVINN and to determine whether it is possible to design a system that can rival ALVINN using the same input and output, but without using a neural network. Like ALVINN, ELVIS observes the road through a video camera and observes human steering response through encoders mounted on the steering column. After a few minutes of observing the human trainer, ELVIS can take control. ELVIS learns the eigenvectors of the image and steering training set via principal component analysis. These eigenvectors roughly correspond to the primary features of the image set and their correlations to steering. Road-following is then performed by projecting new images onto the previously calculated eigenspace. ELVIS architecture and experiments are discussed as well as implications for eigenvector-based systems and how they compare with neural network-based systems.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"ELVIS: Eigenvectors for Land Vehicle Image System\",\"authors\":\"J. Hancock, C. Thorpe\",\"doi\":\"10.1109/IROS.1995.525772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ELVIS (Eigenvectors for Land Vehicle Image System) is a road-following system designed to drive the CMU Navlabs. It is based on ALVINN, the neural network road-following system built by Dean Pomerleau at CMU. ELVIS is an attempt to more fully understand ALVINN and to determine whether it is possible to design a system that can rival ALVINN using the same input and output, but without using a neural network. Like ALVINN, ELVIS observes the road through a video camera and observes human steering response through encoders mounted on the steering column. After a few minutes of observing the human trainer, ELVIS can take control. ELVIS learns the eigenvectors of the image and steering training set via principal component analysis. These eigenvectors roughly correspond to the primary features of the image set and their correlations to steering. Road-following is then performed by projecting new images onto the previously calculated eigenspace. ELVIS architecture and experiments are discussed as well as implications for eigenvector-based systems and how they compare with neural network-based systems.\",\"PeriodicalId\":124483,\"journal\":{\"name\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1995.525772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.525772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

ELVIS(陆地车辆图像特征向量系统)是一个道路跟踪系统,设计用于驱动CMU导航实验室。它基于由CMU的Dean Pomerleau建立的神经网络道路跟踪系统ALVINN。ELVIS试图更全面地理解ALVINN,并确定是否有可能设计一个系统,可以使用相同的输入和输出,但不使用神经网络与ALVINN竞争。和ALVINN一样,ELVIS通过摄像机观察路况,并通过安装在转向柱上的编码器观察驾驶员的驾驶反应。观察人类训练员几分钟后,猫王就可以控制了。ELVIS通过主成分分析学习图像的特征向量和转向训练集。这些特征向量大致对应于图像集的主要特征及其与转向的相关性。然后通过将新图像投影到先前计算的特征空间来执行道路跟踪。讨论了ELVIS架构和实验,以及基于特征向量的系统的含义,以及它们如何与基于神经网络的系统进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ELVIS: Eigenvectors for Land Vehicle Image System
ELVIS (Eigenvectors for Land Vehicle Image System) is a road-following system designed to drive the CMU Navlabs. It is based on ALVINN, the neural network road-following system built by Dean Pomerleau at CMU. ELVIS is an attempt to more fully understand ALVINN and to determine whether it is possible to design a system that can rival ALVINN using the same input and output, but without using a neural network. Like ALVINN, ELVIS observes the road through a video camera and observes human steering response through encoders mounted on the steering column. After a few minutes of observing the human trainer, ELVIS can take control. ELVIS learns the eigenvectors of the image and steering training set via principal component analysis. These eigenvectors roughly correspond to the primary features of the image set and their correlations to steering. Road-following is then performed by projecting new images onto the previously calculated eigenspace. ELVIS architecture and experiments are discussed as well as implications for eigenvector-based systems and how they compare with neural network-based systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The automatic detection and visual tracking of moving objects by eye-in-hand robotic systems Decentralized control of robots for dynamic coordination Cooperation between the human operator and the multi-agent robotic system: evaluation of agent monitoring methods for the human interface system Series elastic actuators Toward a seven axis haptic device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1