亥姆霍兹方程数据补全问题的加速交替迭代算法

Karzan A. Berdawood, A. Nachaoui, M. Nachaoui
{"title":"亥姆霍兹方程数据补全问题的加速交替迭代算法","authors":"Karzan A. Berdawood, A. Nachaoui, M. Nachaoui","doi":"10.19139/soic-2310-5070-1702","DOIUrl":null,"url":null,"abstract":"This paper deals with an inverse problem governed by the Helmholtz equation. It consists in recovering lackingdata on a part of the boundary based on the Cauchy data on the other part. We propose an optimal choice of the relaxationparameter calculated dynamically at each iteration. This choice of relaxation parameter ensures convergence without priordetermination of the interval of the relaxation factor required in our previous work. The numerous numerical example showsthat the number of iterations is drastically reduced and thus, our new relaxed algorithm guarantees the convergence for allwavenumber k and gives an automatic acceleration without any intervention of the user.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An accelerated alternating iterative algorithm for data completion problems connected with Helmholtz equation\",\"authors\":\"Karzan A. Berdawood, A. Nachaoui, M. Nachaoui\",\"doi\":\"10.19139/soic-2310-5070-1702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with an inverse problem governed by the Helmholtz equation. It consists in recovering lackingdata on a part of the boundary based on the Cauchy data on the other part. We propose an optimal choice of the relaxationparameter calculated dynamically at each iteration. This choice of relaxation parameter ensures convergence without priordetermination of the interval of the relaxation factor required in our previous work. The numerous numerical example showsthat the number of iterations is drastically reduced and thus, our new relaxed algorithm guarantees the convergence for allwavenumber k and gives an automatic acceleration without any intervention of the user.\",\"PeriodicalId\":131002,\"journal\":{\"name\":\"Statistics, Optimization & Information Computing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, Optimization & Information Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-1702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个由亥姆霍兹方程控制的逆问题。它包括在边界的另一部分的柯西数据的基础上恢复缺失数据的一部分。我们提出了在每次迭代时动态计算松弛参数的最优选择。这种松弛参数的选择保证了收敛性,而无需事先确定我们先前工作中所需的松弛因子的间隔。大量的数值实例表明,迭代次数大大减少,因此,我们的新松弛算法保证了所有波数k的收敛性,并在没有任何用户干预的情况下给出了自动加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An accelerated alternating iterative algorithm for data completion problems connected with Helmholtz equation
This paper deals with an inverse problem governed by the Helmholtz equation. It consists in recovering lackingdata on a part of the boundary based on the Cauchy data on the other part. We propose an optimal choice of the relaxationparameter calculated dynamically at each iteration. This choice of relaxation parameter ensures convergence without priordetermination of the interval of the relaxation factor required in our previous work. The numerous numerical example showsthat the number of iterations is drastically reduced and thus, our new relaxed algorithm guarantees the convergence for allwavenumber k and gives an automatic acceleration without any intervention of the user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-depth Analysis of von Mises Distribution Models: Understanding Theory, Applications, and Future Directions Bayesian and Non-Bayesian Estimation for The Parameter of Inverted Topp-Leone Distribution Based on Progressive Type I Censoring Comparative Evaluation of Imbalanced Data Management Techniques for Solving Classification Problems on Imbalanced Datasets An Algorithm for Solving Quadratic Programming Problems with an M-matrix An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1