Lakshmishri Upadrasta, Vijay Kumar Garlapati, Nafisa Lakdawala, R. Banerjee
{"title":"用于制药和食品的酶触发水凝胶","authors":"Lakshmishri Upadrasta, Vijay Kumar Garlapati, Nafisa Lakdawala, R. Banerjee","doi":"10.4018/978-1-5225-5237-6.CH008","DOIUrl":null,"url":null,"abstract":"Enzyme-mediated polymeric hydrogels are drawing considerable attention in pharmaceutical and food sectors owing to their superior biocompatibility and process controllability under physiological conditions. Enzymes play a significant role in polymeric hydrogel formation through different mechanisms. Oxidases (e.g., horseradish peroxidase and tyrosinase) have demonstrated to drive the crosslinking of gel precursors by oxidizing the phenolic or acrylic moieties to free radicals. Transferases and hydrolases catalyze elongation of biopolymer chains which gradually self-assemble into hydrogels. Still more certain enzymes also participate in hydrogel formation by releasing gelation factors. Enhancement of the desired properties of certain hydrogels through the interior and exterior post-modifications has also been demonstrated by certain enzymes. Hence, in this chapter, the authors explore the different mechanisms of enzyme-mediated hydrogels preparations and its fabrication towards pharmaceutical and food sectors along with the discussion of recent trends and further prospects.","PeriodicalId":373756,"journal":{"name":"Research Anthology on Recent Advancements in Ethnopharmacology and Nutraceuticals","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzyme-Triggered Hydrogels for Pharmaceutical and Food Applications\",\"authors\":\"Lakshmishri Upadrasta, Vijay Kumar Garlapati, Nafisa Lakdawala, R. Banerjee\",\"doi\":\"10.4018/978-1-5225-5237-6.CH008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enzyme-mediated polymeric hydrogels are drawing considerable attention in pharmaceutical and food sectors owing to their superior biocompatibility and process controllability under physiological conditions. Enzymes play a significant role in polymeric hydrogel formation through different mechanisms. Oxidases (e.g., horseradish peroxidase and tyrosinase) have demonstrated to drive the crosslinking of gel precursors by oxidizing the phenolic or acrylic moieties to free radicals. Transferases and hydrolases catalyze elongation of biopolymer chains which gradually self-assemble into hydrogels. Still more certain enzymes also participate in hydrogel formation by releasing gelation factors. Enhancement of the desired properties of certain hydrogels through the interior and exterior post-modifications has also been demonstrated by certain enzymes. Hence, in this chapter, the authors explore the different mechanisms of enzyme-mediated hydrogels preparations and its fabrication towards pharmaceutical and food sectors along with the discussion of recent trends and further prospects.\",\"PeriodicalId\":373756,\"journal\":{\"name\":\"Research Anthology on Recent Advancements in Ethnopharmacology and Nutraceuticals\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Recent Advancements in Ethnopharmacology and Nutraceuticals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-5237-6.CH008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Recent Advancements in Ethnopharmacology and Nutraceuticals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-5237-6.CH008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enzyme-Triggered Hydrogels for Pharmaceutical and Food Applications
Enzyme-mediated polymeric hydrogels are drawing considerable attention in pharmaceutical and food sectors owing to their superior biocompatibility and process controllability under physiological conditions. Enzymes play a significant role in polymeric hydrogel formation through different mechanisms. Oxidases (e.g., horseradish peroxidase and tyrosinase) have demonstrated to drive the crosslinking of gel precursors by oxidizing the phenolic or acrylic moieties to free radicals. Transferases and hydrolases catalyze elongation of biopolymer chains which gradually self-assemble into hydrogels. Still more certain enzymes also participate in hydrogel formation by releasing gelation factors. Enhancement of the desired properties of certain hydrogels through the interior and exterior post-modifications has also been demonstrated by certain enzymes. Hence, in this chapter, the authors explore the different mechanisms of enzyme-mediated hydrogels preparations and its fabrication towards pharmaceutical and food sectors along with the discussion of recent trends and further prospects.