从异构数据源中合并泰国草药信息的词相似度算法

P. Chainapaporn, P. Netisopakul
{"title":"从异构数据源中合并泰国草药信息的词相似度算法","authors":"P. Chainapaporn, P. Netisopakul","doi":"10.1109/ICITEED.2013.6676231","DOIUrl":null,"url":null,"abstract":"This paper proposes two processes for merging Thai Herb information obtained from heterogeneous data sources. The objective is to combine different formats of Thai herb information into one consistent representation. The processes are implemented in a Sourcing and Merging Agent (SMA) of a Multi-Agent Thai Herb Recommendation system (MA_THR). The first process aims to find and merge the same Thai herb with different names. The second process aims to find synonyms of symptoms. Experiments give 93% accuracy of merging Thai herb information using names and 97% accuracy of finding the similarity between symptoms.","PeriodicalId":204082,"journal":{"name":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Word similarity algorithm for merging Thai Herb information from heterogeneous data sources\",\"authors\":\"P. Chainapaporn, P. Netisopakul\",\"doi\":\"10.1109/ICITEED.2013.6676231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes two processes for merging Thai Herb information obtained from heterogeneous data sources. The objective is to combine different formats of Thai herb information into one consistent representation. The processes are implemented in a Sourcing and Merging Agent (SMA) of a Multi-Agent Thai Herb Recommendation system (MA_THR). The first process aims to find and merge the same Thai herb with different names. The second process aims to find synonyms of symptoms. Experiments give 93% accuracy of merging Thai herb information using names and 97% accuracy of finding the similarity between symptoms.\",\"PeriodicalId\":204082,\"journal\":{\"name\":\"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITEED.2013.6676231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2013.6676231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了两种从异构数据源获取的泰国草药信息的合并过程。目标是将不同格式的泰国草药信息组合成一个一致的表示形式。这些过程是在多代理泰国草药推荐系统(MA_THR)的采购和合并代理(SMA)中实现的。第一个过程的目的是找到并合并相同的泰国草药不同的名称。第二个过程的目的是找到症状的同义词。实验表明,使用名称合并泰国草药信息的准确率为93%,发现症状相似性的准确率为97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Word similarity algorithm for merging Thai Herb information from heterogeneous data sources
This paper proposes two processes for merging Thai Herb information obtained from heterogeneous data sources. The objective is to combine different formats of Thai herb information into one consistent representation. The processes are implemented in a Sourcing and Merging Agent (SMA) of a Multi-Agent Thai Herb Recommendation system (MA_THR). The first process aims to find and merge the same Thai herb with different names. The second process aims to find synonyms of symptoms. Experiments give 93% accuracy of merging Thai herb information using names and 97% accuracy of finding the similarity between symptoms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal unit commitment solution using genetic algorithm combined with the principle of tabu search and priority list method Using estimated arithmetic means of accuracies to select features for face-based gender classification Analysis of factors influencing the mobile technology acceptance for library information services: Conceptual model News recommendation in Indonesian language based on user click behavior A kinetic energy-based feature for unsupervised motion clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1