Manisha S. Sirsat , João Mendes-Moreira , Carlos Ferreira , Mario Cunha
{"title":"基于农业气候模式的葡萄产量机器学习预测模型","authors":"Manisha S. Sirsat , João Mendes-Moreira , Carlos Ferreira , Mario Cunha","doi":"10.1016/j.eaef.2019.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Grapevine yield prediction during phenostage and particularly, before harvest is highly significant as advanced forecasting could be a great value for superior grapevine management. The main contribution of the current study is to develop predictive model for each phenology that predicts yield during growing stages of grapevine and to identify highly relevant predictive variables. Current study uses climatic conditions, grapevine yield, phenological dates, fertilizer information, soil analysis and maturation index data to construct the relational dataset. After words, we use several approaches to pre-process the data to put it into tabular format. For instance, generalization of climatic variables using phenological dates. Random Forest, LASSO and Elasticnet in generalized linear models, and Spikeslab are feature selection embedded methods which are used to overcome dataset dimensionality issue. We used 10-fold cross validation to evaluate predictive model by partitioning the dataset into training set to train the model and test set to evaluate it by calculating Root Mean Squared Error (RMSE) and Relative Root Mean Squared Error (RRMSE). Results of the study show that rf_PF, rf_PC and rf_MH are optimal models for flowering (PF), colouring (PC) and harvest (MH) phenology respectively which estimate 1484.5, 1504.2 and 1459.4 (Kg/ha) low RMSE and 24.6%, 24.9% and 24.2% RRMSE, respectively as compared to other models. These models also identify some derived climatic variables as major variables for grapevine yield prediction. The reliability and early-indication ability of these forecast models justify their use by institutions and economists in decision making, adoption of technical improvements, and fraud detection.</p></div>","PeriodicalId":38965,"journal":{"name":"Engineering in Agriculture, Environment and Food","volume":"12 4","pages":"Pages 443-450"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.eaef.2019.07.003","citationCount":"20","resultStr":"{\"title\":\"Machine Learning predictive model of grapevine yield based on agroclimatic patterns\",\"authors\":\"Manisha S. Sirsat , João Mendes-Moreira , Carlos Ferreira , Mario Cunha\",\"doi\":\"10.1016/j.eaef.2019.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Grapevine yield prediction during phenostage and particularly, before harvest is highly significant as advanced forecasting could be a great value for superior grapevine management. The main contribution of the current study is to develop predictive model for each phenology that predicts yield during growing stages of grapevine and to identify highly relevant predictive variables. Current study uses climatic conditions, grapevine yield, phenological dates, fertilizer information, soil analysis and maturation index data to construct the relational dataset. After words, we use several approaches to pre-process the data to put it into tabular format. For instance, generalization of climatic variables using phenological dates. Random Forest, LASSO and Elasticnet in generalized linear models, and Spikeslab are feature selection embedded methods which are used to overcome dataset dimensionality issue. We used 10-fold cross validation to evaluate predictive model by partitioning the dataset into training set to train the model and test set to evaluate it by calculating Root Mean Squared Error (RMSE) and Relative Root Mean Squared Error (RRMSE). Results of the study show that rf_PF, rf_PC and rf_MH are optimal models for flowering (PF), colouring (PC) and harvest (MH) phenology respectively which estimate 1484.5, 1504.2 and 1459.4 (Kg/ha) low RMSE and 24.6%, 24.9% and 24.2% RRMSE, respectively as compared to other models. These models also identify some derived climatic variables as major variables for grapevine yield prediction. The reliability and early-indication ability of these forecast models justify their use by institutions and economists in decision making, adoption of technical improvements, and fraud detection.</p></div>\",\"PeriodicalId\":38965,\"journal\":{\"name\":\"Engineering in Agriculture, Environment and Food\",\"volume\":\"12 4\",\"pages\":\"Pages 443-450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.eaef.2019.07.003\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering in Agriculture, Environment and Food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1881836618302106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Agriculture, Environment and Food","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1881836618302106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Machine Learning predictive model of grapevine yield based on agroclimatic patterns
Grapevine yield prediction during phenostage and particularly, before harvest is highly significant as advanced forecasting could be a great value for superior grapevine management. The main contribution of the current study is to develop predictive model for each phenology that predicts yield during growing stages of grapevine and to identify highly relevant predictive variables. Current study uses climatic conditions, grapevine yield, phenological dates, fertilizer information, soil analysis and maturation index data to construct the relational dataset. After words, we use several approaches to pre-process the data to put it into tabular format. For instance, generalization of climatic variables using phenological dates. Random Forest, LASSO and Elasticnet in generalized linear models, and Spikeslab are feature selection embedded methods which are used to overcome dataset dimensionality issue. We used 10-fold cross validation to evaluate predictive model by partitioning the dataset into training set to train the model and test set to evaluate it by calculating Root Mean Squared Error (RMSE) and Relative Root Mean Squared Error (RRMSE). Results of the study show that rf_PF, rf_PC and rf_MH are optimal models for flowering (PF), colouring (PC) and harvest (MH) phenology respectively which estimate 1484.5, 1504.2 and 1459.4 (Kg/ha) low RMSE and 24.6%, 24.9% and 24.2% RRMSE, respectively as compared to other models. These models also identify some derived climatic variables as major variables for grapevine yield prediction. The reliability and early-indication ability of these forecast models justify their use by institutions and economists in decision making, adoption of technical improvements, and fraud detection.
期刊介绍:
Engineering in Agriculture, Environment and Food (EAEF) is devoted to the advancement and dissemination of scientific and technical knowledge concerning agricultural machinery, tillage, terramechanics, precision farming, agricultural instrumentation, sensors, bio-robotics, systems automation, processing of agricultural products and foods, quality evaluation and food safety, waste treatment and management, environmental control, energy utilization agricultural systems engineering, bio-informatics, computer simulation, computational mechanics, farm work systems and mechanized cropping. It is an international English E-journal published and distributed by the Asian Agricultural and Biological Engineering Association (AABEA). Authors should submit the manuscript file written by MS Word through a web site. The manuscript must be approved by the author''s organization prior to submission if required. Contact the societies which you belong to, if you have any question on manuscript submission or on the Journal EAEF.